Как представить в виде дроби выражение
Перейти к содержимому

Как представить в виде дроби выражение

  • автор:

Рациональные выражения

Урок 1: Рациональные выражения

В 5 и 6 классе мы уже изучали дроби и действия над ними. В 7 классе рассматривались рациональные числа, которые, по сути, и являются дробями. Однако до этого мы изучали только так называемые числовые дроби, у которых в числителе и знаменателе стоят какие-то числа либо выражения с числами, но не переменные величины.

1ytyiui

Следующие дроби являются числовыми:

2hgjyj

Однако нередко в алгебре приходится иметь дело и с дробями, которые содержат переменные. В качестве примера подобных выражений можно привести:

3hgjh

Так как деление на ноль является недопустимой операцией в алгебре, то некоторые дроби могут не иметь смысла. Так, дробь

4hgfh

бессмысленна, так как ее знаменатель 21 – 3•7 равен нулю.

Если дробь содержит переменные величины, то ее значение зависит от этих переменных. Так, дробь

5hgh

при у = 4 принимает значение, равное 9. Если же у = 3, то эта дробь окажется бессмысленной.

Значения переменных величин, при которых дробь сохраняет свой смысл, называют допустимыми значениями переменных.

Пример. Укажите множество допустимых значений величин х и у для дроби

6hgfh

Решение. Недопустим только случай, при котором в знаменателе находится ноль, то есть когда выполняется равенство

или равносильное ему равенство

Следовательно, допустимыми значениями являются все такие пары (х; у), что х ≠ у.

Пример. Каковы допустимые значения величин а и b в дроби

7hgfh

Решение. В данной записи есть три дробных черты, а значит, и три знаменателя:

8hgfh

Ни один из знаменателей не должен равняться нулю, поэтому

9hgfhfgh

Перенесем в последнем неравенстве 2-ое слагаемое вправо, изменив знак (правила преобразований выражений со знаком ≠ точно такие же, как и у равенств):

10bfghgfh

По свойству пропорции имеем:

Итак, допустимыми являются все значения a и b, при которых а ≠ 0, b≠ 0, a≠b.

Пример. Найдите множество допустимых значений х для дроби

11kjhjk

Ясно, что знаменатель должен отличаться от нуля:

Чтобы найти, при каких значениях неизвестной величины знаменатель обращается в ноль, надо решить уравнение

Представим полином в левой части как произведение, применив формулу квадрата разности:

Получаем, что исходная дробь сохраняет смысл при любых х, отличных от – 5 и 5.

Порою дроби, содержащие переменные, могут встречаться в тождествах.

Пример. Докажите тождество

12jhk

Решение. У дроби в левой части знаменатель всегда положителен, поэтому все допустимыми являются все значения c. Согласно свойству операции деления, делимое равно произведению делителя и частного, поэтому для доказательства тождества надо лишь показать справедливость равенства

(с 3 – 2с 2 + с – 2) = (с – 2)(с 2 + 1)

Раскроем скобки в правой части:

(с – 2)(с 2 + 1) = с 3 – 2с 2 + с – 2

Получили одинаковое выражение и для левой, и для правой части тождества, следовательно, оно верное.

Теперь сформулируем понятие рационального выражения.

13kjhk

Среди рациональных выражений выделяют целые и дробные выражения.

14gfhgh

15hgfh

Приведем примеры целых рациональных выражений:

16jhjkjk

А вот несколько примеров дробных рациональных выражений:

17jhghj

Стоит заметить, что дробь и дробное выражение – это два разных понятия. Для иллюстрации приведем два примера:

  • 18jhgj– это дробь, но целое, а не дробное выражение;
  • (х + 7):t – это дробное выражение, но не дробь.

Отдельно отметим, что дробь равна нулю тогда, когда ее числитель равен нулю, а знаменатель нет. Если же и знаменатель равен нулю, то получается недопустимое действие – деление на ноль, поэтому дробь не будет иметь смысла.

Пример. Найдите все корни уравнения

19jhgjhj

Решение. На первый взгляд уравнение кажется сложным, особенно из-за знаменателя. Однако он здесь почти не играет роли. В левой части находится дробь, значит, нулю равен ее знаменатель:

х – 1 = 0 или х + 2 = 0

Получили два корня. Осталось убедиться, что при этих значениях х дробь не становится бессмысленной, то есть ее знаменатель не обращается в ноль. При х = 1 имеем знаменатель

2•1 4 – 3•1 3 + 5•1 – 4 = 2 – 3 + 5 – 4 = 0

поэтому число 1 НЕ является корнем уравнения. Теперь проверим знаменатель при х = – 2:

2•(– 2) 4 – 3•( – 2) 3 + 5•( – 2) – 4 =

= 32 + 24 – 10 – 4 = 42

Получается, что единственное корень уравнения – это ( – 2).

Сокращение рациональных выражений

Узнав, какие выражения являются рациональными, мы приступим к изучению их преобразований. Напомним главное свойство дроби:

20gfhgh

Оно означает, что числитель и знаменатель можно умножить на произвольное число (кроме нуля), то значение дроби останется прежним:

21hgj

Это правило остается верным и в том случае, когда вместо чисел используются переменные величины.

22juyui

Например, возможны такие преобразования рациональных выражений:

23gfdgfg

24gfhgh

Например, пусть надо привести дробь

25hghj

к знаменателю 6а 2 b 2 .

На что именно надо умножитель знаменатель, что получился одночлен 6а 2 b 2 ? Очевидно, что

6а 2 b 2 = 2а 2 b•3b

Поэтому выражения над и под дробной чертой надо умножить на 3b:

26hjghj

Использованный нами множитель 3b называют дополнительным множителем.

Обратная операция, при которой из знаменателя и числителя убирают совпадающие множители, называется сокращением дроби:

27jhgjhj

Это тождество означает, что дроби можно сокращать, убирая общий множитель, например:

28jhgj

Аналогичные действия можно совершать не только с числовыми дробями, но и с дробными выражениями:

29jhjk

В последнем примере мы вынесли общие множители за скобки (2х и 7у), чтобы над и под чертой появилась одинаковая сумма х + 3у, которую можно сократить.

Однако при сокращении дробей важно учитывать область ее допустимых значений, ведь из-за изменения знаменателя она может измениться. Например, пусть требуется построить график функции

30dsdf

В числителе стоит разность квадратов, которую можно разложить на множители:

31gfdg

Казалось бы, мы получили линейную функцию

чей график нам известен – это прямая. Но она определена при всех возможных х, в то время как исходная дробь бессмысленна при х = 2, ведь тогда знаменатель становится равен нулю. Поэтому график функции будет выглядеть как прямая, однако одна из ее точек, с координатами (2; 4), будет «выколотой» точкой, и исключенной:

32hghh

Данный рисунок означает, что графиком функции – прямая линия, кроме точки (2; 4)

33mnbhj

Выколотая точка на графике изображается маленьким незакрашенным кружочком.

Следующее важное свойство дроби связано со знаком минус. Знак, стоящий перед дробью, можно перенести либо в знаменатель, либо в числитель:

34gfdg

Также напомним, что можно поменять местами уменьшаемое и вычитаемое в скобках, если изменить перед ней знак:

Применение этих правил позволяет упрощать некоторые дроби, например:

35hgj

Более сложный пример:

36hgfh

Рассмотрим такое понятие, как однородный многочлен. Так называют тот полином, у которого все одночлены имеют одинаковую степень.

37jhgj

Подробнее о степени одночлена можно узнать в этом уроке. Если коротко, то степень одночлена – эта сумма степеней у всех переменных, входящих в его буквенную часть. Например, у следующих мономов степень равна 4:

  • 3х 4 (у единственной переменной степень равна 4);
  • 8х 3 у (степень у х равна 3, а степень у равна 1, 3 + 1 = 4);
  • 5х 2 у 2 (степени у обеих переменных равны 2, 2 + 2 = 4);
  • 10у 4 (в буквенной части только переменная у, чья степень равна 4).

Соответственно, многочлен 3х 4 + 8х 3 у + 5х 2 у 2 + 10у 4 , составленный из всех этих мономов, будет однородным. Примерами однородных полиномов также являются:

  • z 6 + v 6 – 2z 2 v 4 (здесь степени мономов равны 6);
  • a 2 – ab (степень одночленов равна 2).

В отношении однородных полиномов, состоящих из двух переменных, можно применять особый прием. Достаточно поделить его на одну из переменных в степени полинома, и получится выражение, зависящее только от одной дроби. Поясним это на примере. Пусть надо вычислить значение отношения

38oiuo

если известно другое отношение:

39rtyy

В исходной дроби представляет собой отношение двух однородных полиномов третьей степени. Поэтому поделим их на y 3 (можно было делить и на х 3 ). При этом значение дроби не изменится, ведь мы делим числитель и знаменатель на одинаковый моном:

40dsdf

Получили выражение, которое зависит только от отношения

41dsdf

Попытаемся найти эту величину из условия

42gfdfg

Отсюда следует, что

43gffdg

Теперь подставим найденное отношение в формулу(1):

44hgj

До этого мы рассматривали примеры дробных выражений, состоящие из полиномов с целыми коэффициентами. Если же используются дробные числа, то от них всегда можно избавиться, домножив дробь на какое-нибудь число.

Например, дана дробь

45fdfgf

Коэффициенты при у и у 2 дробные. Избавимся от них. Для этого используем дополнительный множитель 12:

46ggfgh

Далее рассмотрим сложение и вычитание дробных выражений. Проще всего эту операцию проводить в том случае, когда у дробей совпадают знаменатели. В такой ситуации используются уже нам известные правила:

47fgdfg

48fdgffg

49jhgj

Сложим две величины:

50fdfg

В их знаменателе стоит одинаковый полином, а потому операция будет выглядеть так:

51gfdggh

Здесь мы в числителе использовали формулу квадрата разности.

Теперь вычтем из выражения

52fghgh

53ghfh

У них совпадают знаменатели, поэтому проблем с вычитанием не возникает:

54hgfgh

Заметим, что обычно у дробных выражения стараются сокращать до тех пор, пока не получится несократимая дробь.

Если у дробей различные знаменатели, то приводят к общему знаменателю, домножая их на какой-нибудь дополнительный множитель.

Рассмотрим следующий пример:

55hghjhj

Знаменатели дробей разные, однако, обе дроби можно привести к знаменателю 24х 2 у 3 . Почему именно к нему? Дело в том, у коэффициентов мономов 6х 2 у и 8ху 3 наименьшим общим кратным (НОК) является число 24 (о НОК можно узнать из этого урока). Добавим к этому коэффициенту переменные из одночленов с наибольшими показателями (х 2 и у 3 ) и получим моном 24х 2 у 3 . Итак,домножим первую дробь на 4у 2 , а вторую – на 3х:

56jjkk

Есть и более простой способ найти общий знаменатель, для этого достаточно просто перемножить знаменатели дробей-слагаемых. Однако дальнейшие преобразования будут более долгими. Решим таким путем тот же пример:

57jkhjk

В числителе возможно вынесение общего множителя 2ху за скобки:

58sdfdf

Видно, что конечный результат операции не изменился.

Если в знаменателях складываемых дробей стоят многочлены, то стоит попробовать разложить их на множители. За счет этого порою удается найти более простой общий знаменатель.

Пусть надо сложить выражения

59dfdg

Вынесем в знаменателях за скобки множители х и у:

60hgh

В знаменателях есть похожие множители, (3х – у) и (у – 3х). Чтобы они оказались одинаковыми, надо поменять местами вычитаемое и уменьшаемое в одних скобках. Для этого перед ними надо добавить знак «минус»:

61fghgh

Общим множителем этих дробей является произведение ху(3х – у):

62hgnb

Осталось разложить числитель, где стоит разность квадратов:

63dfg

Следующий важный навык, который может потребоваться при работе с рациональными выражениями – это выделение целой части из дроби.

Продемонстрируем эту операцию на примере

64fgfg

Перепишем дробь, поменяв порядок слагаемых в числителе:

65fdfg

И в знаменателе, и в числителе есть сумма х 2 + 1. Теперь можно произвести выделение целой части:

66bngh

В справедливости данного преобразования можно убедиться, выполнив его «в обратную сторону»:

67bvbg

Любой многочлен можно сделать дробью, если приписать ему числитель, равный 1. Пусть надо упростить формулу

68gfdg

Заменим 2х – 1 на дробь и произведем вычитание:

69gfgdfg

70gfgd

Упростить далее эту дробь довольно сложно, но всё же возможно. Для этого надо заменить одночлен (– 3х 2 ) на разность (– х 2 – 2х 2 ), а 14х на сумму (6х+8х). Посмотрим, что получится в результате:

71fdfg

Складывать можно и более двух дробей. Пусть надо упростить сумму

72nbgh

Будем складывать слагаемые последовательно, то есть сначала сложим два первых слагаемых, потом к результату добавим третье, а далее и 4-ое слагаемое:

73nhgj

74nghj

Представление дроби в виде суммы дробей

Сумму двух дробей можно представить в виде несократимой дроби единственным образом, например:

75hgfh

Однако у обратной задачи, разложения одной дроби на сумму нескольких других, есть бесконечной множество решений:

76bghjhj

То же самое верно в отношении дробных выражений. Например,

77mjk

можно разложить так:

78gfdg

С другой стороны, это же выражение можно представить в следующем виде:

79mhjk

Для раскладывания дроби на сумму дробей можно воспользоваться методом неопределенных коэффициентов, предложенным Рене Декартом в 1637 году. Покажем, как его использовать, на примере. Пусть надо представить в виде суммы двух дробей отношение

80dsgf

Заметим, что знаменатель х 2 – 4 можно записать как произведение полиномов первой степени (х – 2)(х + 2):

81sdf

Это означает, что исходное выражение можно представить как сумму дробей со знаменателями (х – 2) и (х + 2). Обозначим числители в этих дробях как неизвестные величины aи b (они и носят название неопределенных коэффициентов). Тогда можно записать, что

82dfg

Задача сводится к тому, чтобы найти a и b. Для этого преобразуем сумму дробей:

83bgfh

Полученная дробь должна равняться исходной дроби:

84nbgh

У правой и левой части равны знаменатели, а значит, должны равняться и числители:

(a + b)x + (2a– 2b) = 2x + 6

Это тождество может быть верным только тогда, когда справа и слева равны коэффициенты перед переменной х, а также свободные члены, поэтому можно записать систему:

85nhgj

Решив эту систему, мы сможем найти значения a и b. Используем метод подстановки, выразив а из первого уравнения:

Подставим эту формулу во второе уравнение:

Далее находим a:

а = 2 – b = 2 – (– 2,5) = 2 + 2,5 = 4,5

Итак, получили, что a = 4,5 и b = – 2,5. Это значит, исходную дробь можно разложить следующим образом:

86nhghjk

87dfgg

Теперь рассмотрим, как производится умножение и деление дробных выражений. Эти действия аналогичны операциям с обычными числами, которые уже изучались в 5 классе. Напомним две основные формулы:

88gfhgfh

89fdfg

90fdfgf

Пусть требуется перемножить величины

91dsdfdf

Эта операция осуществляется так:

92dsrtfg

Теперь посмотрим, как выполняется деление:

93bghh

Деление заменяется умножением на дробь, обратную делителю:

94bgfhy

Для упрощения выражений часто используют формулы сокращенного умножения:

95nghjhg

При возведении дроби в степень надо отдельно возводить в степени знаменатель и числитель:

96gfhgh

Вообще для любого натурального числа nбудет верным тождество:

97hgfh

Пусть надо возвести в 4-ую степень дробь

98nhgj

Выглядеть это будет так:

99jhhjg

Преобразование рациональных выражений

Если у дроби в знаменателе и числителе записаны полиномы, то ее называют рациональной дробью. В виде рациональной дроби можно записать любое рациональное выражение.

Пусть надо записать в виде рациональной дроби выражение

100vfgdfg

Сначала выполним вычитание в скобках, а потом и деление:

101fdhgh

Обратим внимание, что выражение

(2а + 1) 2 – (2а – 1) 2

представляет собой не что иное, как разность квадратов, для которой можно применить формулу сокращенного умножения:

(2а + 1) 2 – (2а – 1) 2 = (2а + 1 + 2а – 1)( 2а + 1 – (2а – 1)) =

= (2а + 1 + 2а – 1)( 2а + 1 – 2а + 1).

Используя это, продолжим работать с дробью:

102vfdhg

Однако иногда удобнее не производить вычисления в скобках, а использовать распределительный закон умножения:

Пусть требуется упростить произведение:

103bgfhf

Сначала раскроем скобки:

104bghjhj

105nhgjkk

Часто проблемы возникают с так называемыми «многоэтажными» дробями. Так называют дроби, у которых в числителе и знаменателе стоят другие дробные выражения. Выглядят они внушительно, однако правила работы с ними такие же, как и с другими выражениями. Каждая дробная черта просто означает операцию деления.

Пусть требуется выполнить преобразование дробного рационального выражения

Представте в виде дроби выражение 5/9 + m/n

Чтобы представить в виде дроби выражение 5/9 + m/n мы должны пройти следующий алгоритм действий.

Алгоритм для решения задания

  • приведем дроби к общим знаменателю;
  • вспомним правило сложение дробей с одинаковым знаменателем;
  • сложим дроби и запишем ответ.

Выполняем сложение дробей

Для того, чтобы представить заданное выражение в виде дроби нужно выполнить сложение двух дробей с разными знаменателями.

Вспомним правило, как сложить дроби с разными знаменателями.

Чтобы сложить или вычесть дроби с разными знаменателями, надо:

  1. Найти наименьший общий знаменатель (НОЗ) данных дробей.
  2. Найти дополнительный множитель к каждой дроби. Для этого новый знаменатель нужно разделить на старый.
  3. Умножить числитель и знаменатель каждой дроби на дополнительный множитель и сложить или вычесть дроби с одинаковыми знаменателями.

Наименьшим общим знаменателем для двух заданных дробей будет 9n.

Чтобы привести дроби к общему знаменателю домножим числитель и знаменатель первой дроби на n, а числитель и знаменатель второй дроби на 9, получим:

5/9 + m/n = 5n/9n + 9m/9n.

Теперь вспомним правило для сложения дробей с общим знаменателем.

Суммой дробей с одинаковыми знаменателями называют дробь,числитель которой равен сумме числителей исходных дробей,и со знаменателем равным знаменателю обеих дробей.

5n/9n + 9m/9n = (5n + 9m)/9n.

Для того, чтобы представить выражение 5/9 + m/n в виде дроби, нужно ее привести к общей дроби. Для этого, нужно сначала найти общий знаменатель. Общим знаменателем 9 и n является знаменатель (9 * n). Затем, общий знаменатель делим на каждый знаменатель и полученное значение умножаем на каждый числитель. Найденные значения записываются в числителе, а в знаменателе записываем общий найденный знаменатель. То есть получаем:

5/9 + m/n =(9 * n/9 * 5 + 9 * n/n * m)/(9 * n) = (n * 5 + 9 * m)/(9 * n) = (5 * n + 9 * m)/(9 * n) ;

В итоге получили, выражение 5/9 + m/n в виде дроби (5 * n + 9 * m)/(9 * n).

Преобразование рациональных выражений: виды преобразований, примеры

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Определение и примеры рациональных выражений

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x — 5 , — 3 · a · b 3 — 1 c 2 + 4 a 2 + b 2 1 + a : ( 1 — b ) , ( x + 1 ) · ( y — 2 ) x 5 — 5 · x · y · 2 — 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями. Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Преобразовать рациональное выражение 3 · x x · y — 1 — 2 · x x · y — 1 .

Видно, что такое рациональное выражение – это разность 3 · x x · y — 1 и 2 · x x · y — 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 · 3 — 2 = x x · y — 1

Ответ: 3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 .

Выполнить преобразование 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) .

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x = 2 · x · y 4 · ( — 4 ) · x 2 : 2 : x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · ( — 4 ) · x 2 : 2 : x = ( 2 · ( — 4 ) : 2 ) · ( x · x 2 : x ) · y 4 = — 4 · x 2 · y 4

Ответ: 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = — 4 · x 2 · y 4 .

Преобразовать выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 .

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида ( x · ( x + 3 ) — ( 3 · x + 1 ) ) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x 2 + 3 · x — 3 · x — 1 1 2 · 4 · x + 2 = x 2 — 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 — 1 2 · x + 2 = ( x — 1 ) · ( x + 1 ) 2 · ( x + 1 ) = x — 1 2

Ответ: x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x — 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Представить в виде рациональной дроби a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a .

Данное выражение можно представить в виде a 2 — 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 — 25 a + 3 · 1 a 2 + 5 · a = a — 5 · ( a + 5 ) a + 3 · 1 a · ( a + 5 ) = a — 5 · ( a + 5 ) · 1 ( a + 3 ) · a · ( a + 5 ) = a — 5 ( a + 3 ) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a — 3 — a — 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a — 3 — a — 5 a + 3 · a = a + 5 · a + 3 a · ( a — 3 ) · ( a + 3 ) — ( a — 5 ) · ( a — 3 ) ( a + 3 ) · a · ( a — 3 ) = = a + 5 · a + 3 — ( a — 5 ) · ( a — 3 ) a · ( a — 3 ) · ( a + 3 ) = a 2 + 3 · a + 5 · a + 15 — ( a 2 — 3 · a — 5 · a + 15 ) a · ( a — 3 ) · ( a + 3 ) = = 16 · a a · ( a — 3 ) · ( a + 3 ) = 16 a — 3 · ( a + 3 ) = 16 a 2 — 9

После чего очевидно, что исходное выражение примет вид 16 a 2 — 9 .

Ответ: a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 — 9 .

Представить x x + 1 + 1 2 · x — 1 1 + x в виде рациональной дроби.

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x — 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · ( x + 1 ) 1 · ( x + 1 ) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x — 1 1 + x = 2 · x + 1 x + 1 2 · x — 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1 : 2 · x — 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1 : 2 · x — 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x — 1 = 2 · x + 1 · ( 1 + x ) ( x + 1 ) · ( 2 · x — 1 ) = 2 · x + 1 2 · x — 1

Можно решить это иначе.

Вместо деления на 2 · x — 1 1 + x производим умножение на обратную ей 1 + x 2 · x — 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x — 1 1 + x = x x + 1 + 1 : 2 · x — 1 1 + x = x x + 1 + 1 · 1 + x 2 · x — 1 = = x x + 1 · 1 + x 2 · x — 1 + 1 · 1 + x 2 · x — 1 = x · 1 + x ( x + 1 ) · 2 · x — 1 + 1 + x 2 · x — 1 = = x 2 · x — 1 + 1 + x 2 · x — 1 = x + 1 + x 2 · x — 1 = 2 · x + 1 2 · x — 1

Грамотное преобразование рациональных выражений

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

Задача № 2

Переходим ко второй задаче:

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[D=25-4\cdot \left( -6 \right)=25+24=49\]

Мы можем переписать трехчлен следующим образом:

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

Запишем разложение нашей квадратной конструкции:

\[\left( x-y \right)\left( x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

Переписываем и стараемся разложить каждое слагаемое:

\[6xy=2\cdot 3\cdot x\cdot y=2x\cdot 3y\]

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

Задача № 2

Давайте рассмотрим все дроби.

\[3-6x=3\left( 1-2x \right)\]

Перепишем всю конструкцию с учетом изменений:

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

Рассмотрим каждое слагаемое отдельно.

\[12ab=3\cdot 4ab=3a\cdot 4b\]

Весь числитель второй дроби мы можем переписать следующим образом:

Теперь посмотрим на знаменатель:

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

Перепишем всю нашу конструкцию следующим образом:

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

Перепишем вторую скобку с учетом изменений:

Теперь запишем всю исходную конструкцию:

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

До новых встреч!

  1. Как выполнять сокращение рациональных дробей без ошибок? Простой алгоритм на примере пяти различных задач.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *