Как представить 3 в виде логарифма
Перейти к содержимому

Как представить 3 в виде логарифма

  • автор:

Как представить 3 в виде логарифма

Аргумент и основание логарифма.png

Натуральный логарифм: логарифм, у которого основание — число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln\).
Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg\).

Множеством (областью) значений показательной функции Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Такое значение аргумента единственное, так как если Логарифм - формулы, свойства и примеры с решениеми Логарифм - формулы, свойства и примеры с решениемто по следствию из п. 2.3 верно равенство c = d. Это единственное значение аргумента с называют логарифмом числа b по основанию a и обозначают Логарифм - формулы, свойства и примеры с решениемт. е.

Логарифм - формулы, свойства и примеры с решением

Таким образом, равенство Логарифм - формулы, свойства и примеры с решениемозначает, что Логарифм - формулы, свойства и примеры с решениемСформулируем определение логарифма еще раз.

Пусть Логарифм - формулы, свойства и примеры с решениемЛогарифмом числа b по основанию а называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

  • а)Логарифм - формулы, свойства и примеры с решением
  • б) Логарифм - формулы, свойства и примеры с решением
  • в)Логарифм - формулы, свойства и примеры с решением
  • г) Логарифм - формулы, свойства и примеры с решением
  • д)Логарифм - формулы, свойства и примеры с решениемне имеет смысла, так как значение выражения Логарифм - формулы, свойства и примеры с решениемпри любом значении х положительно и не может быть равно -9;
  • е) по определению логарифма не имеют смысла и такие выражения, как Логарифм - формулы, свойства и примеры с решениемпоскольку основанием логарифма должно быть положительное число, отличное от единицы.

Обозначим Логарифм - формулы, свойства и примеры с решениемТогда, согласно определению логарифма, верно равенство Логарифм - формулы, свойства и примеры с решениемт. е.

Логарифм - формулы, свойства и примеры с решением

Согласно этому тождеству, например, имеем: Логарифм - формулы, свойства и примеры с решениемОсновное логарифмическое тождество позволяет данное число b представить в виде степени с любым положительным основанием.

Например: Логарифм - формулы, свойства и примеры с решением

а) Записать число Логарифм - формулы, свойства и примеры с решениемв виде логарифмов по основанию Логарифм - формулы, свойства и примеры с решением

б) Записать число -5 в виде логарифмов по основанию Логарифм - формулы, свойства и примеры с решениеми х Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Между какими целыми числами находится числоЛогарифм - формулы, свойства и примеры с решением

Пусть Логарифм - формулы, свойства и примеры с решениемтогда верно равенство Логарифм - формулы, свойства и примеры с решениемПоскольку Логарифм - формулы, свойства и примеры с решениемПо свойствам показательной функции с основанием 2 имеем Логарифм - формулы, свойства и примеры с решениемЗначит,Логарифм - формулы, свойства и примеры с решениемнаходится между числами 4 и 5.

Ответ: Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

а) Поскольку Логарифм - формулы, свойства и примеры с решениемто по определению логарифма имеем Логарифм - формулы, свойства и примеры с решением

б)Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Логарифмы по основанию 10 имеют особое название — десятичные логарифмы. Десятичный логарифм числа b обозначается Логарифм - формулы, свойства и примеры с решением. Таким образом, Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойствам степениЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемI используя равенство (1), получим Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойствам степени Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Отсюда по следствию из п. 2.3 получаем равенство (3).Логарифм - формулы, свойства и примеры с решением

Следствие 1. Если числа Логарифм - формулы, свойства и примеры с решениемодного знака, то имеет место равенство

Логарифм - формулы, свойства и примеры с решением

Следствие 2. При любом целом Логарифм - формулы, свойства и примеры с решениемимеет место равенство

Логарифм - формулы, свойства и примеры с решением

Пример №1

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

При любых значениях Логарифм - формулы, свойства и примеры с решениеми Логарифм - формулы, свойства и примеры с решениемверно равенство

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Так как Логарифм - формулы, свойства и примеры с решениемПоэтому левую и правую части этого равенства можно разделить на Логарифм - формулы, свойства и примеры с решениемВ результате получим тождество (6). Логарифм - формулы, свойства и примеры с решением

Способ 2. Пусть Логарифм - формулы, свойства и примеры с решениемтогда Логарифм - формулы, свойства и примеры с решениемЛогарифмируя обе части этого равенства по основанию а, получаем

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Итак, Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Пример №2

Найти значение выражения, если Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемсогласно тождеству (6) имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемс учетом условия Логарифм - формулы, свойства и примеры с решениемполучимЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

6)Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Пример №3

Упростить выражение Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойству (2) логарифмов имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Рассмотрим выражение Логарифм - формулы, свойства и примеры с решениемгде х — переменная, а — постоянная, Логарифм - формулы, свойства и примеры с решениемЭто выражение имеет смысл при любом значении х > 0 и не имеет смысла при любом значении Логарифм - формулы, свойства и примеры с решениемТаким образом, естественной областью определения выражения Логарифм - формулы, свойства и примеры с решениемЛогарифм - формулы, свойства и примеры с решениемявляется множество всех положительных действительных чисел, т. е. промежуток Логарифм - формулы, свойства и примеры с решением

Логарифмической функцией называется функция вида Логарифм - формулы, свойства и примеры с решениемгде а — постоянная, Логарифм - формулы, свойства и примеры с решением

Область определения логарифмической функции — это естественная область определения выражения Логарифм - формулы, свойства и примеры с решениемт.е. множество Логарифм - формулы, свойства и примеры с решением

График функции Логарифм - формулы, свойства и примеры с решениемрасположен справа от оси Оу и пересекает ось Ох в точке (1; 0).

Когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» опускается вниз. А когда значения аргумента х увеличиваются, то график «медленно» поднимается вверх (ем. рис. 34). Аналогично для любой функции Логарифм - формулы, свойства и примеры с решениемпри а > 1 (рис. 35). График функции Логарифм - формулы, свойства и примеры с решениемрасположен справа от оси Оу и пересекает ось Ох в точке (1; 0) (см. рис. 34).

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Заметим, что когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» поднимается вверх. А когда значения аргумента х увеличиваются, то график «медленно» опускается вниз. Аналогично для любой функции Логарифм - формулы, свойства и примеры с решениемпри 0 1 логарифмическая функция принимает отрицательные значения на интервале (0; 1) и принимает положительные значения на интервале Логарифм - формулы, свойства и примеры с решениемИ при 0 1 логарифмическая функция возрастает на всей области определения. При 0 1 график логарифмической функции лежит в IV координатном угле, когда Логарифм - формулы, свойства и примеры с решениеми лежит в I координатном угле, когда Логарифм - формулы, свойства и примеры с решениемПри 0 1 логарифмическая функция возрастает на области определения, а на рисунке 36 видно, что при 0

\[c = <\log _a><a^c>\]» width=»77″ height=»18″ /></p>
<p><img decoding=

\[ - \frac<2> <3>= <\log _<64>><64^< - \frac<2><3>>> = <\log _<64>>\frac<1><<<<64>^<\frac<2><3>>>>> = <\log _<64>>\frac<1><<\sqrt[3]<<<<64>^2>>>>> = \]» width=»344″ height=»41″ /></p>
<p><img decoding=

С помощью калькулятора или компьютера можно узнать, что

Тогда искомое нами время примерно равно

t = – 10 log2 0,3 ≈ – 10•(– 1,737) ≈ 17,37 минут ≈ 17 минут 22 секунды

Ответ: – 10 log2 0,3 минут ≈ 17 минут 22 секунды.

Из задачи видно, что с логарифмы используются и при решении некоторых практических задач.

Иногда бывает удобнее использовать иное определение, которое по своей сути почти не отличается от первого:

Вычислим для примера несколько простейших логарифмов:

Ограничения, связанные с логарифмом

Заметим, что сам логарифм может оказаться любым вещественным числом, ведь мы умеем возводить числа и в отрицательные, и в дробные, и даже в иррациональные степени. Однако для логарифма logab некоторые ограничения накладываются на значение числа а (оно называется основанием логарифма) и на значение числа b (будем называть его аргументом логарифма).

Напомним, что при определении показательной функции у = а х было введено ограничение, согласно которому основание степени (число а) должно быть строго положительным числом и при этом НЕ может равняться единице. Из-за этого и основание логарифма должно также соответствовать этому ограничению. Основание логарифма и основание показательной функции даже специально обозначают одной буквой а, чтобы связь этих двух понятий была очевидней.

Также напомним, что показательное уравнение а х = b имеет решение только при положительных значениях b. Это решение и представляет собой logab. Если же число b отрицательно, то корня у уравнения нет, а значит и вычислить logab невозможно. Поэтому аргумент логарифма не может быть отрицательным.

Сформулируем эти ограничения в виде одного правила:

Ранее мы уже сталкивались с тремя случаями, когда выражения не имеют смысла. Во-первых, это происходит при делении на ноль (или нахождении нуля в знаменателе дроби, что, по сути, одно и то же). Во-вторых, выражения бессмысленны, если под корнем четной степени находится отрицательное число. В-третьих, не имеют смысла выражения, в которых отрицательные числа возводятся в дробную степень, ведь возведение в дробную степень можно заменить извлечением корня

а отрицательное число не должно оказываться под знаком корня

Сейчас мы узнали четвертый подобный случай, связанный с понятием логарифма. Больше в рамках школьного не будут рассматриваться никакие другие ситуации, в которых выражение может потерять смысл.

Основные свойства логарифмов

Любое число, возведенной в первую степень, равно самому себе. То есть справедливо равенство

Из него, пользуясь определением логарифма, получаем первое важное его свойство: logаa = 1.

Продемонстрируем использование этого правила:

Любое число при возведении в нулевую степень равно единице:

Из этого следует второе важное правило: логарифм единицы по любому основанию равен нулю:

Покажем несколько примеров использования этого тривиального правила:

Для получения третьего свойства логарифма запишем очевидно справедливое равенство:

Пользуясь определением логарифма, мы можем записать, что logaa c = c.

Продемонстрируем, как работает это свойство логарифмов:

Это правило можно применить для вычисления некоторых простейших логарифмов:

Логарифм logab, согласно одному из своих определений, это та степень, в которую нужно возвести а, чтобы получилось b. Это определение можно представить в виде формулы:

Данное равенство называют основным логарифмическим тождеством.

В силу этого тождества справедливы следующие равенства:

Функция логарифма

Арифметическое действие, в ходе которого находят логарифм какого-либо числа, называется логарифмированием. Это действие является обратным по отношению к возведению в степень. Проиллюстрируем это табличкой, в которой слева будет показана операция возведения в степень, а справа – логарифмирование:

Теперь подумаем о функции у = logax. Так как логарифмирование является обратным действием для возведения в степень, то и ф-ция у = logax должна быть обратной для показательной ф-ции у = а х .

В свою очередь это означает, что графики этих двух функций должны быть симметричны относительно прямой, задаваемой уравнением у = х.

Напомним, что на вид показательной функции у = а х влияет значение основания степени а. Если оно больше единицы, то функция оказывается возрастающей. Тогда и обратная ей логарифмическая функция также окажется возрастающей. Для примера построим графики у = 2 х и у = log2x.

Полученный график логарифмической функции называют логарифмической кривой, однако понятно, что она представляет собой всё ту же экспоненту, которую отобразили симметрично относительно оси Ох.

График у = log2x можно и построить иначе, по точкам, просто вычислив ее значение в нескольких «удобных» для вычисления точках:

Видно, что в обоих случаях получился один и тот же график. Похожим будет и график любой функции у =logax, если число а будет больше единицы.

Ситуация меняется в том случае, когда а < 1, ведь при таком основании показательная функция у = а х будет убывающей. Тогда убывающим окажется и логарифмическая функция. Для примера построим график ф-ции = 0,5 х и график обратной ей функции у = log0,5x:

Возможно, вы заметили, что графики у = log2x и у = log0,5xчем-то похожи друг на друга. И действительно, если построить их на одной плоскости, то мы увидим, что они симметричны относительно оси Ох:

Причиной такой симметрии является то, что их основания, числа 2 и 0,5, являются обратными числами, то есть при перемножении дают единицу (2•0,5 = 1).

Аналогично такой же симметрией будут обладать любые две логарифмические кривые с обратными основаниями. Это свойство логарифмов мы докажем чуть позднее.

Далее построим ещё несколько графиков, чтобы лучше понять свойства логарифмических функции:

Анализируя полученные графики, мы можем заметить следующие свойства функции логарифма:

Область определения логарифмической функции – это множество всех положительных чисел, то есть промежуток (0; + ∞). Действительно, выражение logаb имеет смысл только тогда, когда число b> 0.

Областью значения логарифмической функции является множество всех действительных чисел, то есть промежуток(– ∞; + ∞).

Логарифмическая функция является строго монотонной. При этом при основании а > 1 она возрастает, а при основании 0 <a< 1 она убывает.

График каждой логарифмической функции проходит через точку (1; 0). Это связано с тем, что для любого основания справедливо равенство loga 1 = 0.

Три основных вида логарифмов

Математика изучает логарифмы с любыми положительными основаниями. Однако на практике наиболее распространены три их вида.

Первым из них является десятичный логарифм, основание которого равно 10. Дело в том, что его помощью до изобретения калькуляторов и компьютеров можно было быстро и с высокой точностью перемножать большие числа, используя такой прибор, как логарифмическая линейка. История понятия логарифма начиналась в XVI-XVII веках и была связана именно с необходимостью выполнения сложных арифметических действий с большими числами. Для обозначения десятичных логарифмов используют специальный символ lg, то есть

Сегодня из-за развития электроники десятичные логарифмы используются значительно реже по сравнению с 50-60 г. XX века. Но, так как почти вся вычислительная техника построена на использовании двоичной системы счета, возросла значимость двоичного логарифма log2b. Для его обозначения не используются никакие специальные символы, однако в работах, посвященным информатике и оценке сложности алгоритмов, он используется особенно часто.

Наконец, самым важным является натуральный логарифм. Это логарифм, основанием которого является число e, примерно равное 2,71828… Для его обозначения используют символ ln, то есть

Свойства натурального логарифма, которые отличают его от других логарифмов, будут изучены нами позднее, в 11 классе. Заметим лишь, что многие физические формулы содержат именно натуральный логарифм.

Преобразования логарифмических выражений

Для работы с логарифмическими выражениями надо знать несколько основных свойств логарифмов. Первое из них помогает вычислять логарифм произведения.

Для доказательства этого правила введем обозначения. Пусть

Тогда нам надо доказать, что z = x + у. По определению логарифма мы можем записать что

Теперь подставим (1) и (2) в (3):

Получили, что a z = a x + y . В этом равенстве в обеих частях стоят степени с совпадающим основанием а. Значит, должны совпадать и их степени, то есть

что и мы и пытались доказать.

Убедимся в справедливости этого правила на простейшем примере. Очевидно, что

log2 4 = 2, ведь 2 2 = 4

log2 8 = 3, ведь 2 3 = 8

log2 32 = 5, ведь 2 5 = 32

С одной стороны, так как

С другой стороны, число 32 можно представить как произведение 4•8, то есть

С учетом этого получаем, что

Покажем несколько примеров использования только что доказанного правила:

Отдельно отметить, что правило сложения логарифмов действует и в том случае, когда складываются не два, а большее количество логарифмов:

Второе правило используют для определения логарифма от степени какого-либо числа.

Грубо говоря, показатель степени можно перенести и записать перед знаком логарифма. Сначала для наглядности приведем доказательство только для случая, когда r– целая степень. Тогда число b r можно представить как произведение r множителей, равных b. Однако логарифм такого произведения можно заменить на сумму r логарифмов:

Однако более строгое доказательство должно рассматривать и случай, когда r – это отрицательное или даже дробное число. Поэтому, как и в ситуации с доказательством первого правила, введем переменные. Пусть

Получается, что нам доказать, что у = r•x. Из определения логарифма следуют следующие формулы:

Подставляя первую формулу во вторую, получаем:

И снова, если у двух равных степеней равны основания, то и показатели обязательно будут равными:

Это равенство мы и пытались доказать.

Продемонстрируем, как работает это свойство логарифмов:

Правило работает и в обратную сторону:

Задание. Чему равна дробь

Третье правило помогает вычислять логарифм от частного или дроби.

Для доказательства этого свойства логарифмов воспользуемся уже доказанными нами двумя правилами. Но предварительно напомним, что произвольное число с в степени (– 1) представляет собой дробь 1/с:

Тогда доказательство будет записываться в две строчки:

С помощью полученной формулы возможно выполнить следующие преобразования:

Заметим, что все полученные формулы справедливы только в том случае, когда под знаком логарифма стоят исключительно положительные числа. Например, вполне допустимо преобразование

но ошибочной будет такая запись:

ведь в левой части стоит выражение, имеющее смысл, а в правой – выражение, смысла не имеющее.

Но что делать в случае, если необходимо упростить выражение с переменными, которые могут принимать как положительные, так и отрицательные значения? Получается, что запись

не является корректной. Действительно, если и х, и у являются отрицательными числами, то их произведение ху положительно. Но тогда получается, что при некоторых значениях переменных левая часть равенства имеет смысл, а правая – нет. Это значит, что оно не является тождеством.

Здесь может помочь использование модуля числа. Запись

уже будет корректной при любых допустимых значениях х и у. Если же хоть одна из переменных будет равна нулю, то обе части равенства одновременно потеряют смысл. Таким образом, данное равенство можно считать тождеством.

Аналогично и формулу разности логарифмов можно представить в более общем случае, при котором допускаются отрицательные значения переменных:

Можно ли записать равенство logaх 2 = 2logaх, если допускается, что х может быть и отрицательным? Нет, нельзя, ведь при отрицательных х выражение левая часть равенства будет иметь смысл, а правая нет. Однако использование модуля поможет и в этом случае. Можно написать, что

Аналогичным образом можно упростить и любые другие логарифмы, аргументы которых возведены в четную степень:

Ещё раз уточним, что эти правила используются при упрощении выражений с переменными, если те могут принимать отрицательные значения. Если же известно, что числа b и c положительны, то лучше использовать формулы, не содержащие модулей.

Переход к новому основанию алгоритма

До этого мы рассматривали преобразования, в ходе которых не менялось основание логарифма. Однако иногда возникает необходимость сложить или вычесть логарифмы с различными основаниями. Пусть надо вычислить значение выражения

Так как основания двух логарифмов различны, то мы не можем использовать выведенную нами формулу разности логарифмов. Однако можно попытаться привести один из логарифмов к новому основанию. Для такой операции существует специальная формула.

Докажем это утверждение. Для этого введем новые переменные:

Тогда по определению логарифма можно записать равенства

Отсюда следует, что a x = c y . Подставим в это равенство вместо а выражение c z и получим:

Отсюда следует, что zx = у, или х = y/z. Теперь заменим х, у и z на логарифмы и получим то самое тождество, которые необходимо доказать:

Вернемся к примеру

Теперь мы можем произвести эти вычисления, но для этого сначала приведем log259 к основанию 5:

Теперь можно вычислить, чему равна искомая разность:

Формула перехода к новому основанию позволяет иначе взглянуть на графики логарифмических функций. Пусть дана функция у =log4x. Попытаемся привести ее к показателю 2:

Выходит, что график у = log4x можно получить из графика у = log2x его сжатием в 2 раза. Убедимся в этом, построив оба графика в одной плоскости:

Заметим, что и более общем случае графики функций у = logax и у = logbx могут быть получены друг из друга растяжением или сжатием в некоторое число раз. Действительно, формулу перехода к новому основанию можно переписать в таком виде:

Теперь подставим вместо числа b переменную х и получим соотношение, связывающее любые две логарифмические функции:

В данном случае logсx и logax – это логарифмические функции, а logca – некоторое число. В результате можно заключить, что график функции у = logсx может быть получен из графика logax его растяжением в logca раз.

Попытаемся привести логарифм logab к обратному основанию, то есть к основанию 1/а:

Итак, logab = – log1/аb. Именно из-за этого графики логарифмов с обратными основаниями (например, 2 и 0,5) симметричны относительно оси Ох:

Покажем примеры использования этой формулы:

А что будет, если мы попробуем logab привести к основанию b? Сделаем это:

Получили ещё одну замечательную логарифмическую формулу.

Её работу иллюстрируют следующие примеры:

Ещё одна логарифмическая формула позволяет возводить основание логарифма и его аргумент в одинаковую степень:

Докажем это тождество в «обратном порядке», то есть из правой части выведем левую. Для этого просто перейдем к основанию а:

Проиллюстрируем, как это свойство можно применять на практике:

Использование логарифма для вычислений

Исторически развитие теории логарифмов было связано с необходимостью выполнять громоздкие вычисления. Например, пусть надо возвести число 7 в пятисотую степень, то есть вычислить величину 7 500 . Сделать напрямую это довольно затруднительно. Однако в силу основного логарифмического тождества мы можем записать, что

Напомним, что десятичный логарифм обозначают символом lg, поэтому перепишем это равенство в более привычном виде:

Степень из-под знака логарифма можно вынести:

Значение числа lg 7 можно узнать с помощью калькулятора, в древности же использовали специальные таблицы, в которых были указаны десятичные логарифмы всех чисел от 1 до 10 (с маленьким шагом, равным, например, 0,001). Так или иначе, можно узнать, что

Получили число, записанное в стандартном виде. При этом наши расчеты были относительно простыми, если сравнить их с необходимостью умножить число 7 само на себя 500 раз. Аналогично и многие другие сложные операции выполняются значительно быстрее, если используются логарифмы. Поэтому долгое время знание теории логарифмов было необходимо для выполнения сложных инженерных расчетов. Но сегодня развитие компьютерной техники позволило избавиться от необходимости использования логарифмических линеек и таблиц.

Логарифмическая функция в природе и науке

Логарифм – это не просто инструмент для выполнения сложных операций. Например, в теории вероятностей существуют логарифмическое и логнормальное (от слов «логарифм» и «нормальное») распределение случайных величин, которые используются в генетике и физике. Так, размеры астероидов в Солнечной системе описываются логарифмическим распределением, а размеры градин во время града – логнормальным.

В компьютерной технике многие величин можно вычислить с использованием логарифмов. Например, ясно, что чем больше телефонных номеров находится в базе данных, тем дольше компьютер будет искать требуемый необходимый номер в ней. Зависимость времени поиска от количества номеров в базе данных описывается логарифмической функцией.

Огромное значение логарифмы имеют в астрономии. Так, яркость звезд на небе характеризуется таким параметром, как «видимая звездная величина». Однако в физике для оценки яркости света используют величину «освещенность», измеряемую в люксах. Зависимость между освещенностью звезд и их видимой величиной также является логарифмической.

Используются логарифмы и в термодинамике для вычисления такой характеристики систем, как энтропия. При расчете количества топлива, необходимого ракете для набора определенной скорости, используется формула Циолковского, содержащая натуральный логарифм:

В биологии давно замечено, что зависимость человеческих ощущений от силы воздействующих на них факторов окружающей среды носит логарифмический характер. В связи с этим для измерения громкости звуков используется специальная шкала децибелов, которая является логарифмической.

В строении ряда организмов можно обнаружить логарифмические кривые. Классическим примером является форма некоторых ракушек.

Логарифм. Как вычислить логарифм?

Объясним проще. Например, \(\log_<2><8>\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_<2><8>=3\).

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание — подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм — нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

б) В какую степень надо возвести \(3\), чтобы получить \(\frac<1><3>\) ? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени ).

в) В какую степень надо возвести \(\sqrt<5>\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

г) В какую степень надо возвести \(\sqrt<7>\), чтобы получить \(\sqrt<7>\)? В первую – любое число в первой степени равно самому себе.

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt<3>\)? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень — это степень \(\frac<1><2>\) .

В сложных случаях для вычисления логарифма удобно переводить его в показательное уравнение.

Пример: Вычислить логарифм \(\log_<4\sqrt<2>><8>\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_=b\) \(\Leftrightarrow\) \(a^=c\)

Что связывает \(4\sqrt<2>\) и \(8\)? Двойка, потому что и то, и другое число можно представить степенью двойки:
\(4=2^<2>\) \(\sqrt<2>=2^<\frac<1><2>>\) \(8=2^<3>\)

Слева воспользуемся свойствами степени: \(a^\cdot a^=a^\) и \((a^)^=a^\)

Основания равны, переходим к равенству показателей

Умножим обе части уравнения на \(\frac<2><5>\)

Получившийся корень и есть значение логарифма

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_<3><8>\).

Хочу подчеркнуть, что \(\log_<3><8>\), как и любой логарифм — это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714. \)

Пример: Решите уравнение \(4^<5x-4>=10\)

\(4^<5x-4>\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^=c\) \(\Leftrightarrow\) \(\log_=b\)

Зеркально перевернем уравнение, чтобы икс был слева

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

Поделим уравнение на 5

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание — число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln\).

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg\).

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^<\log_>=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

Остальные свойства логарифмов вы можете найти здесь . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения \(36^<\log_<6><5>>\)

Зная формулу \((a^)^=a^\), а так же то, что множители можно менять местами, преобразовываем выражение

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_<2><4>\) равен двум. Тогда можно вместо двойки писать \(\log_<2><4>\).

Но \(\log_<3><9>\) тоже равен \(2\), значит, также можно записать \(2=\log_<3><9>\) . Аналогично и с \(\log_<5><25>\), и с \(\log_<9><81>\), и т.д. То есть, получается

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_<2><8>\), или как \(\log_<3><27>\), или как \(\log_<4><64>\)… Здесь мы как аргумент пишем основание в кубе:

Логарифмы и их свойства

Обычно определение логарифма дают очень сложно и запутанно. Мы постараемся сделать это очень просто и наглядно.

Для того, чтобы разобраться, что такое логарифм, давайте рассмотрим пример:

что такое логарифм

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 (\(log_<2>(32)\)) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

Аналогично, глядя в таблицу получим, что:

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа \(b\) по основанию положительно числа \(a\) называется степень \(c\), в которую нужно возвести число \(a\), чтобы получить \(b\)

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм — это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

Или логарифм шести по основанию 4:

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм \(log_<4>(6)\). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:

$$ log_<4>(4) \lt log_<4>(6) \lt log_<4>(16);$$ $$ 1 \lt log_<4>(6) \lt 2. $$

Значит \(log_<4>(6)\) принадлежите промежутку от 1 до 2:

Как посчитать логарифм

Почему так? Это следует из определения показательной функций. Показательная функция не может быть \(0\). А основание не равно \(1\), потому что тогда логарифм теряет смысл – ведь \(1\) в любой степени это будет \(1\).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень \(x\) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • \(x\) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм \(9\) по основанию \(3\): \(log_<3>(9)\)

  • Сначала представим аргумент и основание в виде степени тройки: $$ 3=3^1, \qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень \(x\) нужно возвести \(3^1\), чтобы получить \(3^2\) $$ (3^1)^x=3^2, $$ $$ 3^<1*x>=3^2, $$ $$ 1*x=2,$$ $$ x=2.$$
  • Вот мы и решили: $$log_<3>(9)=2.$$

Пример 2. Вычислить логарифм \(\frac<1><125>\) по основанию \(5\): \(log_<5>(\frac<1><125>)\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1, \qquad \frac<1><125>=\frac<1><5^3>=5^<-3>;$$
  • В какую степень \(x\) надо возвести \(5^1\), чтобы получить \(5^<-3>\): $$ (5^1)^x=5^<-3>, $$ $$ 5^<1*x>=5^<-3>,$$ $$1*x=-3,$$ $$x=-3.$$
  • Получили ответ: $$ log_<5>(\frac<1><125>)=-3.$$

Пример 3. Вычислить логарифм \(4\) по основанию \(64\): \(log_<64>(4)\)

  • Представим аргумент и основание в виде степени двойки: $$ 64=2^6, \qquad 4=2^2;$$
  • В какую степень \(x\) надо возвести \(2^6\), чтобы получить \(2^<2>\): $$ (2^6)^x=2^<2>, $$ $$ 2^<6*x>=2^<2>,$$ $$6*x=2,$$ $$x=\frac<2><6>=\frac<1><3>.$$
  • Получили ответ: $$ log_<64>(4)=\frac<1><3>.$$

Пример 4. Вычислить логарифм \(1\) по основанию \(8\): \(log_<8>(1)\)

  • Представим аргумент и основание в виде степени двойки: $$ 8=2^3 \qquad 1=2^0;$$
  • В какую степень \(x\) надо возвести \(2^3\), чтобы получить \(2^<0>\): $$ (2^3)^x=2^<0>, $$ $$ 2^<3*x>=2^<0>,$$ $$3*x=0,$$ $$x=\frac<0><3>=0.$$
  • Получили ответ: $$ log_<8>(1)=0.$$

Пример 5. Вычислить логарифм \(15\) по основанию \(5\): \(log_<5>(15)\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1 \qquad 15= . ;$$ \(15\) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть: $$ log_<5>(15).$$

Как понять, что некоторое число \(a\) не будет являться степенью другого числа \(b\). Это довольно просто – нужно разложить \(a\) на простые множители.

\(16\) разложили, как произведение четырех двоек, значит \(16\) будет степенью двойки.

Разложив \(48\) на простые множители, видно, что у нас есть два множителя \(2\) и \(3\), значит \(48\) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается — \(lg(a)\).

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию \(e\). Обозначение — \(ln(x)\). Что такое \(e\)? Так обозначают экспоненту, число-константу, равную, примерно, \(2,718281828459…\). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием \(e\) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой \(3\). Логарифм от произведения – это сумма логарифмов.

Пример 9. Воспользоваться формулой \(4\). Логарифм от частного – это разность логарифмов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *