Когда подбрасываем монету какова вероятность выпадения решки
Перейти к содержимому

Когда подбрасываем монету какова вероятность выпадения решки

  • автор:

Бросание монет. Решение задач на нахождение вероятности

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей — задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например «Симметричную монету бросают дважды. » или «Бросают 3 монеты . «, но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один — по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй — по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

1. Классическое определение вероятности

Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как $P=m/n$, где $n$ — число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а $m$ — число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О — выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем $n=4$. Теперь из них надо отобрать только те, что удовлетворяют условию «орел выпадет ровно один раз», это комбинации ОР и РО и их ровно $m=2$. Тогда искомая вероятность равна $P=2/4=1/2=0.5$. Готово!

Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.

Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, $n=4$. А вот условию «оба раза выпала одна сторона» удовлетворяют другие комбинации: РР и ОО, откуда $m=2$. Нужная вероятность равна $P=2/4=1/2=0.5$.

Как видим, все довольно просто. Перейдем к чуть более сложной задаче.

Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Снова применим формулу классической вероятности. Шаг первый — выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже $n=8$ (кстати, они находятся по формуле $n=2^k$, где $k$ — число бросков монеты).

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет $m=3$. Тогда вероятность события $P=m/n=3/8=0.375$.

Взяли разгон и переходим к 4 монетам.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Приступаем к вычислению. Шаг первый — выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться $n=2^4=16$ штук! Вот они:
OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.

Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза: OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO, их будет $m=10$. Тогда вероятность равна $P=m/n=10/16=5/8=0.625$.

Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.

2. Комбинаторика + классическая вероятность

Надо заметить, что если действовать исключительно переборным методом (как это делалось выше), с ростом числа монет быстро растет число комбинаций (для 5 монет — 32, для 6 монет — 64 и так далее), так что и вероятность ошибиться при выписывании исходов велика, метод решения теряет свою простоту и привлекательность.

Один из способов решения этой проблемы — остаться в рамках формулы классической вероятности, но использовать комбинаторные методы (см. формулы комбинаторики тут) для подсчета числа исходов. Поясню на примере последней задачи, решив ее другим способом.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 4 монет. Все исходы можно закодировать некоторой последовательностью вида $X_1 X_2 X_3 X_4$, где $X_i=O$ (в $i$-ый раз выпал орел) или $X_i=P$ (в $i$-ый раз выпала решка). Найдем число всех таких последовательностей. Значение $X_1$ (результат первого броска) может быть выбран 2 способами (орел или решка), значение $X_2$ (результат второго броска) может быть выбран 2 способами (орел или решка), и так далее. Итого получим всего $n=2\cdot 2\cdot 2\cdot 2=16$ различных исходов. Или, если использовать формулу комбинаторики для числа размещений с повторениями из 2 объектов по 4 позициям, сразу получим $n=A_4^2=2^4=16$.

Найдем число благоприятствующих исходов с использованием комбинаторики. Сначала найдем число таких последовательностей, где О встречается ровно 2 раза. Выбираем $C_4^2$ способами 2 позиции, где будет стоять О (на остальных тогда ставим решки). Аналогично для последовательностей, где О встречается ровно 3 раза — $C_4^3$ способами выбираем 3 позиции, где будет стоять О (на оставшейся позиции записывается решка). Подсчитывая число сочетаний и складывая, найдем количество благоприятствующих комбинаций: $$ m=C_4^2+C_4^3=\frac<4!><2!2!>+\frac<4!><3!1!>=\frac<3\cdot 4><1\cdot 2>+4=6+4=10. $$ Итого получаем такое же значение вероятности: $P=m/n=10/16=0.625$.

Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.

Например, если рассмотреть подобную задачу:

Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза

Ответ можно получить без выписывания 256 комбинаций (. ), просто по аналогии с примером выше: $$ n=2^8=256;\\ m=C_8^4=\frac<8!><4!4!>=\frac<5\cdot 6\cdot 7 \cdot 8><1\cdot 2 \cdot 3 \cdot 4>=70;\\ P=\frac=\frac<70><256>=0.273. $$

Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).

Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 6 монет. Так как каждый бросок дает 2 возможных исхода (О или Р), всего получим $n=2^6=64$ элементарных исхода (комбинации вида ОРОРОР, ОООРРР и т.д.).

Найдем число благоприятствующих исходов. Мысленно объединим два герба, которые должны появиться рядом, в один объект (ОО). Остается выбрать ему место среди остальных 4 решек (так гербов должно выпасть 2, то решек — 6-2=4). Существует $m=C_5^1=5$ способов выбрать позицию в последовательности из 5 объектов. Для наглядности, если выбрана позиция 2, то есть оба герба стоят на втором месте, это комбинация Р(ОО)РРР, если выбрана позиция 4 — РРР(ОО)Р.
Искомая вероятность: $P=m/n=5/64=0.078$.

Способ 3. Формула Бернулли

Рассмотрим общую задачу о подбрасывании монет.
Пусть бросается $n$ монет (или, что тоже самое, монета бросается $n$ раз). Нужно вычислить вероятность того, что герб появится в точности $k$ раз.

Так как броски монет — события независимые (результат броска одной монеты не влияет на последующие броски), вероятность выпадения герба в каждом броске одинакова (и равна $p=1/2=0.5$), то можно для вычисления вероятности применить формулу Бернулли: $$ P=P_n(k)=C_n^k \cdot p^k \cdot (1-p)^ = C_n^k \cdot \left(1/2\right)^k \cdot \left(1-1/2\right)^=C_n^k \cdot \left(1/2\right)^n. $$

То есть, мы вывели общую формулу, дающую ответ на вопрос «какова вероятность того, что герб появится в точности $k$ раз из $n$» (запишем в трех эквивалентных видах, выбирайте удобный для себя): $$ P=C_n^k \cdot \left(1/2\right)^n=\frac<2^n>=C_n^k \cdot 0.5^n, \quad C_n^k=\frac. $$

А теперь все задачи решаются проще простого, вот глядите!

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Подставляем $n=2, k=1$ и получаем $P=C_2^1 \cdot \left(1/2\right)^2=2 \cdot \frac<1><4>=\frac<1><2>=0.5.$

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Это уже третий способ решения задачи!
Подставляем $n=4, k=2$ и $k=3$, получаем $$P=C_4^2 \cdot \left(1/2\right)^4+C_4^3 \cdot \left(1/2\right)^4=(6+4) \cdot \frac<1><16>=\frac<10><16>=0.625.$$

Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Подставляем $n=3, k=0$ и получаем $P=C_3^0 \cdot \left(1/2\right)^3=1 \cdot \frac<1><8>=\frac<1><8>=0.125.$

Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.

Подставляем $n=8, k=7$ и $k=8$ и получаем $$P=C_8^8 \cdot \left(1/2\right)^8+ C_8^7 \cdot \left(1/2\right)^8=(1+8) \cdot \frac<1><256>=\frac<9><256>=0.035.$$

Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.

Полезные ссылки

Решебник по вероятности

А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):

Какова вероятность того что выпадет решка

Бросание монет. Решение задач на нахождение вероятности

Какова вероятность того что выпадет решка

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

1. Классическое определение вероятности

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.

Как видим, все довольно просто. Перейдем к чуть более сложной задаче.

Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Взяли разгон и переходим к 4 монетам.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.

2. Комбинаторика + классическая вероятность

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.

Например, если рассмотреть подобную задачу:

Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза

Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).

Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.

Способ 3. Формула Бернулли

А теперь все задачи решаются проще простого, вот глядите!

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.

Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.

Полезные ссылки

Решебник по вероятности

А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):

Теории вероятностей: готовимся к собеседованию и разрешаем «парадоксы»

Какова вероятность того что выпадет решка

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов и набора неотрицательных чисел , таких что их сумма равна . Довольно часто все исходы считаются равновероятными, т.е. . В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество . Вероятность события , обозначается , — это сумма всех таких , что . В частности, вероятность пустого события равна нулю, а события равна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е. .

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка чеканная «правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов, . Так как мы договорились, что монетка «правильная», то разумно считать, что . Теперь давайте перечислим все возможные события и их вероятности.

Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов, , все их вероятности равны . Количество различных событий в этом эксперименте равно (это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

Пример: два подбрасывания монетки

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е. .
Примеры событий.

Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов . Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с исходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е. . Но мы можем для удобства рассмотреть более простое множество элементарных исходов с 31 исходом, но с разными вероятностями: , , .

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию
.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством и вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть и — два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей и , другими словами , событие также называют суммой событий и и обозначают . Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых от общего числа, а жёлтых — . Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке шаров, то рассматриваемому событию соответствует шаров, т.е. от общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию , выражается, как (если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число от 1 до 100. Рассмотрим следующие события:

Формула включений и исключений

где — это пересечение событий и , т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в , и в (такое событие также называют произведением событий и и обозначают ).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

Словами: чтобы найти вероятность того, что произойдут оба события и , надо умножить вероятность события на условную вероятность события при известном .

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

(В этом определении предполагаются, что обе вероятности событий и строго больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Задачи для самопроверки

И подставив это в определение получаем формулу Байеса

которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

Когда мы можем говорить о вероятности?

Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

Какова вероятность того, что гуляя по улице вы встретите динозавра?

Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% ��

Парадоксы

В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

Парадокс Монти-Холла

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов , соответствующим номеру двери, за которым находится автомобиль, и вероятностями . Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим , и «сменить дверь», обозначим .

Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через дверь, которую игрок выбрал изначально, а через — дверь, за которой спрятан автомобиль. Тогда для любого событие «игрок выиграл при использовании стратегии » соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие , т.е. , и его вероятность . Событие «игрок выиграл при использовании стратегии » соответствует противоположному событию , т.е. , и его вероятность . Осталось ещё раз отметить, что, если этот анализ верен для любого выбора , поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

Парадокс мальчика и девочки

Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

Вероятностное пространоство задано и все вероятности равны . В первом случае нам известно, что выполнено событие . Поэтому при условии вероятность двух девочек равна 1/2.

Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

Парадокс Спящей Красавицы

Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

Предлагается рассмотреть два альтернативных решения с разными результатами.

Решение 1

У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна .

Решение 2

Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна .

Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

Задача для самопроверки

Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

Бесконечный случай

Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

Вместо заключения

Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

БОНУС

Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

Простые задачи по теории вероятности. Основная формула.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат — исход. Нужно заметить, что на результат можно смотреть по-разному. «Мы вытащили какой-то шар» — тоже результат. «Мы вытащили синий шар» — результат. «Мы вытащили именно вот этот шар из всех возможных шаров» — такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: «выбранный шар оказался синего цвета»
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, — то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти — невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» — для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы 285926, 285927), бракованные и качественные сумки или садовые насосы (прототипы 282857, 282856) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. (285922, 285923) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы 282855, 282858, 285924, 285928):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип 285925. Остались задачи про монеты (282854) и игральные кости (285853), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·. ·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

neveev

Некоторое время назад ко мне обратился один мой подписчик и сообщил, что между ним и его коллегой возник интересный спор по поводу того, какая комбинация орлов и решек, возникающая при подбрасывании монеты, более вероятна, а какая – менее.

Этот спор шел вокруг вопроса о том, какая комбинация более вероятна, если при первом броске выпала решка: РР или РО. Коллега моего подписчика считал, что более вероятна вторая комбинация и объяснял это примерно так:

« Вероятность выпадения двух решек равна ½ * ½ = ¼. Значит, вероятность выпадение любой иной комбинации составляет 1 — ¼ = ¾. Следовательно, вероятность того, что если уже выпала решка, то при следующем броске снова выпадет решка составляет ¼, а вот вероятность того, что выпадет орел, составляет 1 – ¼ = ¾ » .

Другими словами, коллега моего подписчика утверждал, что если нам при первом броске выпала решка, то при втором броске нам с большей вероятностью выпадет орел, чем решка.

Мой подписчик, который прочитал много моих статей о когнитивных искажениях, эвристиках и об ошибках, которые мы делаем, когда пытаемся рассуждать о случайностях и о вероятности тех или событий, знал, что этот вывод неверен и пытался переубедить своего коллегу, показать ошибочность его рассуждений.

Дошло до того, что коллега моего подписчика предложил проверить его вывод эмпирически. Он предлагал сделать это следующим образом.

«Кидаем монету, если выпадает орел, то начинаем заново, если выпадает решка, то фиксируем, какой стороной выпадет монета при втором броске, а затем начинаем следующую попытку».

Всего предлагалось сделать сто таких попыток.

Поскольку мой подписчик был неопытен в сфере споров о теории вероятностей, он согласился на этот опыт, и они стали кидали монету. Они сделали сто попыток, и в итоге распределение получилось примерно 60 на 40, т.е. примерно в шестидесяти случаев из ста после того, как выпала решка, выпал орел, и только в примерно сорока случаях после решки снова выпала решка.

Эти данные коллега моего подписчика, естественно, обратил в свою пользу и сказал что-то вроде того, что 60 стремится к 75, и если бы было больше попыток, например, не сто, а тысяча, то соотношение РО/РР было бы еще ближе (!) к 75/25.

Как же обстоят дела на самом деле?

Да очень просто.

Какова вероятность того, что при двух подбрасываниях монеты, она каждый раз упадет решкой? Тут коллега моего подписчика абсолютно прав. Эта вероятность составляет ¼ или 25%. Такова же и вероятность каждого из трех альтернативных исходов.
Действительно, всего существует четыре варианта исходов двукратного подбрасывания монеты:

  • РР
  • ОО
  • РО
  • ОР

Но дело в том (и это ключевой момент!), что если нам уже выпала решка, то число возможных комбинаций сокращается с четырех до двух: РР и РО. Другими словами, если нам уже выпала решка, то при следующем подбрасывании нам выпадет или орел, или решка. Вариантов всего два, а значит вероятность каждого из них составляет ½ или 50%.

Учитывая вот это изменение ситуации после первого броска, которого человек не понял, не уловил, можно предположить, что механизм, лежащий в основе ошибочного вывода коллеги моего подписчика, примерно тот же, что лежит в основе знаменитого парадокса Монти Холла.

Кроме того, возможно, в основе того, что коллеге моего подписчика более вероятной казалась, так сказать, гетерогенная комбинация – РО – лежит и эвристика репрезентативности.

Не менее вероятно и то, что коллега моего подписчика просто не очень хорошо понимает теорию вероятностей, проще говоря, прорешал мало соответствующих учебных задач.

– Но почему же в процессе эмпирической проверки соотношение комбинаций РО к РР, – спросит кто-то, – не составило 50 на 50, как это должно было бы быть в соответствии с нашими расчетами?

Здесь мы можем вспомнить совершенно правильное утверждение коллеги моего подписчика о том, почему эмпирическое соотношение разошлось с теоретическим: попыток маловато.

Действительно, в случае, если бы они записали исходы тысячи попыток, соотношение еще сильнее приблизилось бы к 50/50.

Ну, а в заключение я бы хотел отметить, что описанный реальный случай не только интересен сам по себе, но и позволяет сделать несколько очень полезных выводов и сформулировать достаточно ценные рекомендации. Давайте же их перечислим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *