Теорема о разложении многочлена на линейные множители
Всякий многочлен n – ой степени разлагается на n линейных множителей вида х – а и множитель, равный коэффициенту при старшей степени x n . Доказательство. Пусть f (x) = A0x n + A1x n — 1 + … + An — многочлен n – ой степени. Этот многочлен в силу основной теоремы алгебры имеет один корень а1. Тогда из следствия теоремы Безу будем иметь f (x) = (х – а1)·f1 (x), где f1 (x) — многочлен степени n — 1. Многочлен f1 (x) тоже имеет корень а2. Тогда f1 (x) = (х – а2 )·f2 (x), где f 2 (x) — многочлен степени n – 2. Аналогично f2 (x) = (х – а3)·f3 (x). Продолжая процесс выделения линейных множителей, дойдём до соотношения fn(x) = (х – а n )·fn, где fn — число (многочлен нулевой степени), и это число равно коэффициенту при х n , то есть fn = А0. На основании всех этих равенств можно записать
17.Разложение многочлена с действительными коэффицентами на неприводимые множетели
Неприводимый многочлен — многочлен, неразложимый на нетривиальные (неконстантные) многочлены. Неприводимые многочлены являются неприводимыми элементами кольца многочленов.
Определение
Неприводимый многочлен над полем ― многочлен
от
переменных над полем является простым элементом кольца
, то есть, непредставим в виде произведения
, где
и
― многочлены с коэффициентами из , отличные от констант.
Многочлен называется абсолютно неприводимым, если он неприводим над алгебраическим замыканием поля коэффициентов. Абсолютно неприводимые многочлены одной переменной ― это многочлены 1-й степени и только они. В случае нескольких переменных существуют абсолютно неприводимые многочлены сколь угодно высокой степени — например, любой многочлен вида
Примеры
Следующие пять многочленов демонстрируют некоторые элементарные свойства неприводимых многочленов:
,
,
,
,
.
Над кольцом целых чисел, первые два многочлена — приводимые, последние два — неприводимые. (Третий вообще не является многочленом над целыми числами).
Над полем рациональных чисел, первые три многочлена являются приводимыми, двое других — неприводимыми.
Над полем действительных чисел, первые четыре многочлена — приводимые, но
является неприводимым. В поле действительных чисел неприводимыми являются линейные многочлены и квадратичные многочлены без действительных корней. Например разложение многочлена
в поле действительных чисел имеет вид
. Оба множителя в данном разложении являются неприводимыми многочленами.
Над полем комплексных чисел, все пять многочленов — приводимые. Фактически, каждый отличный от константы многочлен над может быть разложен на множители вида:
где — степень многочлена, — старший коэффициент, — корни . Поэтому единственными неприводимыми многочленами над являются линейные многочлены (основная теорема алгебры).
[Править]Конечные поля
Многочлены с целочисленными коэффициентами, которые являются неприводимыми над полем могут быть приводимыми над конечным полем. Например, многочлен является неприводимым над , но над полем
из двух элементов мы имеем:
Решение задач по математике онлайн
‘.$_COOKIE[’email’].’ Выход’ ); /*
Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.
Т.е. задачи сводятся к нахождению чисел \( p, q \) и \( n, m \)
Программа не только даёт ответ задачи, но и отображает процесс решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.
В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5x +1/7x^2
Результат: \( 3\frac<1> <3>— 5\frac<6> <5>x + \frac<1><7>x^2 \)
При вводе выражения можно использовать скобки. В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)
Разложение многочлена на множители
Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.
Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.
Теория
Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей ( x — x i ) , i = 1 , 2 , … , n , тогда P n ( x ) = a n ( x — x n ) ( x — x n — 1 ) · . . . · ( x — x 1 ) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.
Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.
Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n ( x ) = a n ( x — x n ) ( x — x n — 1 ) · . . . · ( x — x 3 ) x 2 + p x + q , где x 2 + p x + q = ( x — x 1 ) ( x — x 2 ) .
Замечание
Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.
Основная теорема алгебры
Любой многочлен со степенью n имеет как минимум один корень.
Теорема Безу
После того, как произвели деление многочлена вида P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 на ( x — s ) , тогда получаем остаток, который равен многочлену в точке s , тогда получим
P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = ( x — s ) · Q n — 1 ( x ) + P n ( s ) , где Q n — 1 ( x ) является многочленом со степенью n — 1 .
Следствие из теоремы Безу
Когда корень многочлена P n ( x ) считается s , тогда P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = ( x — s ) · Q n — 1 ( x ) . Данное следствие является достаточным при употреблении для описания решения.
Разложение на множители квадратного трехчлена
Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) , где x 1 и x 2 — это корни (комплексные или действительные).
Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.
Произвести разложение квадратного трехчлена на множители.
Необходимо найти корни уравнения 4 x 2 — 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = ( — 5 ) 2 — 4 · 4 · 1 = 9 . Отсюда имеем, что
x 1 = 5 — 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1
Отсюда получаем, что 4 x 2 — 5 x + 1 = 4 x — 1 4 x — 1 .
Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:
4 x — 1 4 x — 1 = 4 x 2 — x — 1 4 x + 1 4 = 4 x 2 — 5 x + 1
После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.
Произвести разложение на множители квадратный трехчлен вида 3 x 2 — 7 x — 11 .
Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 — 7 x — 11 = 0 .
Чтобы найти корни, надо определить значение дискриминанта. Получим, что
3 x 2 — 7 x — 11 = 0 D = ( — 7 ) 2 — 4 · 3 · ( — 11 ) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 — D 2 · 3 = 7 — 181 6
Отсюда получаем, что 3 x 2 — 7 x — 11 = 3 x — 7 + 181 6 x — 7 — 181 6 .
Произвести разложение многочлена 2 x 2 + 1 на множители.
Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что
2 x 2 + 1 = 0 x 2 = — 1 2 x 1 = — 1 2 = 1 2 · i x 2 = — 1 2 = — 1 2 · i
Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x — 1 2 · i x + 1 2 · i .
Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .
Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.
x 2 + 1 3 x + 1 = 0 D = 1 3 2 — 4 · 1 · 1 = — 35 9 x 1 = — 1 3 + D 2 · 1 = — 1 3 + 35 3 · i 2 = — 1 + 35 · i 6 = — 1 6 + 35 6 · i x 2 = — 1 3 — D 2 · 1 = — 1 3 — 35 3 · i 2 = — 1 — 35 · i 6 = — 1 6 — 35 6 · i
Получив корни, запишем
x 2 + 1 3 x + 1 = x — — 1 6 + 35 6 · i x — — 1 6 — 35 6 · i = = x + 1 6 — 35 6 · i x + 1 6 + 35 6 · i
Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.
Способы разложения на множители многочлена степени выше второй
При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на ( x — x 1 ) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.
Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.
Вынесение общего множителя за скобки
Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n ( x ) = a n x n + a n — 1 x n — 1 + . . . + a 1 x .
Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n ( x ) = a n x n + a n — 1 x n — 1 + . . . + a 1 x = = x ( a n x n — 1 + a n — 1 x n — 2 + . . . + a 1 )
Данный способ считается вынесением общего множителя за скобки.
Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 — x на множители.
Видим, что x 1 = 0 — это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:
4 x 3 + 8 x 2 — x = x ( 4 x 2 + 8 x — 1 )
Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x — 1 . Найдем дискриминант и корни:
D = 8 2 — 4 · 4 · ( — 1 ) = 80 x 1 = — 8 + D 2 · 4 = — 1 + 5 2 x 2 = — 8 — D 2 · 4 = — 1 — 5 2
Тогда следует, что
4 x 3 + 8 x 2 — x = x 4 x 2 + 8 x — 1 = = 4 x x — — 1 + 5 2 x — — 1 — 5 2 = = 4 x x + 1 — 5 2 x + 1 + 5 2
Разложение на множители многочлена с рациональными корнями
Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n ( x ) = x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .
Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.
Произвести разложение выражения f ( x ) = x 4 + 3 x 3 — x 2 — 9 x — 18 .
Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа — 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:
x i | Коэффициенты многочленов | ||||
1 | 3 | — 1 | — 9 | — 18 | |
1 | 1 | 3 + 1 · 1 = 4 | — 1 + 4 · 1 = 3 | — 9 + 3 · 1 = — 6 | — 18 + ( — 6 ) · 1 = — 24 |
— 1 | 1 | 3 + 1 · ( — 1 ) = 2 | — 1 + 2 · ( — 1 ) = — 3 | — 9 + ( — 3 ) · ( — 1 ) = — 6 | — 18 + ( — 6 ) · ( — 1 ) = — 12 |
2 | 1 | 3 + 1 · 2 = 5 | — 1 + 5 · 2 = 9 | — 9 + 9 · 2 = 9 | — 18 + 9 · 2 = 0 |
2 | 1 | 5 + 1 · 2 = 7 | 9 + 7 · 2 = 23 | 9 + 23 · 2 = 55 | |
— 2 | 1 | 5 + 1 · ( — 2 ) = 3 | 9 + 3 · ( — 2 ) = 3 | 9 + 3 · ( — 2 ) = 3 | |
3 | 1 | 5 + 1 · 3 = 8 | 9 + 8 · 3 = 33 | 9 + 33 · 3 = 108 | |
— 3 | 1 | 5 + 1 · ( — 3 ) = 2 | 9 + 2 · ( — 3 ) = 3 | 9 + 3 · ( — 3 ) = 0 |
Отсюда следует, что х = 2 и х = — 3 – это корни исходного многочлена, который можно представить как произведение вида:
f ( x ) = x 4 + 3 x 3 — x 2 — 9 x — 18 = ( x — 2 ) ( x 3 + 5 x 2 + 9 x + 9 ) = = ( x — 2 ) ( x + 3 ) ( x 2 + 2 x + 3 )
Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .
Так как дискриминант получаем отрицательный, значит, действительных корней нет.
Ответ: f ( x ) = x 4 + 3 x 3 — x 2 — 9 x — 18 = ( x — 2 ) ( x + 3 ) ( x 2 + 2 x + 3 )
Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n ( x ) = x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.
Этот случай имеет место быть для дробно-рациональных дробей.
Произвести разложение на множители f ( x ) = 2 x 3 + 19 x 2 + 41 x + 15 .
Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что
4 f ( x ) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g ( y )
Когда получившаяся функция вида g ( y ) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:
± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60
Перейдем к вычислению функции g ( y ) в этих точка для того, чтобы получить в результате ноль. Получаем, что
g ( 1 ) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g ( — 1 ) = ( — 1 ) 3 + 19 · ( — 1 ) 2 + 82 · ( — 1 ) + 60 = — 4 g ( 2 ) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g ( — 2 ) = ( — 2 ) 3 + 19 · ( — 2 ) 2 + 82 · ( — 2 ) + 60 = — 36 g ( 3 ) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g ( — 3 ) = ( — 3 ) 3 + 19 · ( — 3 ) 2 + 82 · ( — 3 ) + 60 = — 42 g ( 4 ) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g ( — 4 ) = ( — 4 ) 3 + 19 · ( — 4 ) 2 + 82 · ( — 4 ) + 60 = — 28 g ( 5 ) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g ( — 5 ) = ( — 5 ) 3 + 19 · ( — 5 ) 2 + 82 · ( — 5 ) + 60
Получаем, что у = — 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = — 5 2 — это корень исходной функции.
Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .
Решение
Запишем и получим:
2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 ( 2 x 2 + 14 x + 6 ) = = 2 x + 5 2 ( x 2 + 7 x + 3 )
Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.
x 2 + 7 x + 3 = 0 D = 7 2 — 4 · 1 · 3 = 37 x 1 = — 7 + 37 2 x 2 = — 7 — 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 — 37 2 x + 7 2 + 37 2
Отсюда следует, что
2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 — 37 2 x + 7 2 + 37 2
Искусственные приемы при разложении многочлена на множители
Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.
Способ группировки
Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.
Произвести разложение многочлена x 4 + 4 x 3 — x 2 — 8 x — 2 на множители.
Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , — 1 , 2 и — 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что
1 4 + 4 · 1 3 — 1 2 — 8 · 1 — 2 = — 6 ≠ 0 ( — 1 ) 4 + 4 · ( — 1 ) 3 — ( — 1 ) 2 — 8 · ( — 1 ) — 2 = 2 ≠ 0 2 4 + 4 · 2 3 — 2 2 — 8 · 2 — 2 = 26 ≠ 0 ( — 2 ) 4 + 4 · ( — 2 ) 3 — ( — 2 ) 2 — 8 · ( — 2 ) — 2 = — 6 ≠ 0
Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.
Необходимо провести группировку:
x 4 + 4 x 3 — x 2 — 8 x — 2 = x 4 + 4 x 3 — 2 x 2 + x 2 — 8 x — 2 = = ( x 4 — 2 x 2 ) + ( 4 x 3 — 8 x ) + x 2 — 2 = = x 2 ( x 2 — 2 ) + 4 x ( x 2 — 2 ) + x 2 — 2 = = ( x 2 — 2 ) ( x 2 + 4 x + 1 )
После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что
x 2 — 2 = 0 x 2 = 2 x 1 = 2 x 2 = — 2 ⇒ x 2 — 2 = x — 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 — 4 · 1 · 1 = 12 x 1 = — 4 — D 2 · 1 = — 2 — 3 x 2 = — 4 — D 2 · 1 = — 2 — 3 ⇒ x 2 + 4 x + 1 = x + 2 — 3 x + 2 + 3
x 4 + 4 x 3 — x 2 — 8 x — 2 = x 2 — 2 x 2 + 4 x + 1 = = x — 2 x + 2 x + 2 — 3 x + 2 + 3
Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.
Произвести разложение на множители многочлен x 4 + 3 x 3 — x 2 — 4 x + 2 .
Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что
x 4 + 3 x 3 — x 2 — 4 x + 2 = = ( x 4 + x 3 ) + ( 2 x 3 + 2 x 2 ) + ( — 2 x 2 — 2 x ) — x 2 — 2 x + 2 = = x 2 ( x 2 + x ) + 2 x ( x 2 + x ) — 2 ( x 2 + x ) — ( x 2 + 2 x — 2 ) = = ( x 2 + x ) ( x 2 + 2 x — 2 ) — ( x 2 + 2 x — 2 ) = ( x 2 + x — 1 ) ( x 2 + 2 x — 2 )
После разложения на множители получим, что
x 4 + 3 x 3 — x 2 — 4 x + 2 = x 2 + x — 1 x 2 + 2 x — 2 = = x + 1 + 3 x + 1 — 3 x + 1 2 + 5 2 x + 1 2 — 5 2
Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители
Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.
Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x — 2 на множители.
Необходимо выполнить преобразование выражения к виду
x 4 + 4 x 3 + 6 x 2 + 4 x — 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 — 3
На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .
Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x — 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 — 3 = x + 1 4 — 3 .
После применения разности квадратов, получим
x 4 + 4 x 3 + 6 x 2 + 4 x — 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 — 3 = x + 1 4 — 3 = = x + 1 4 — 3 = x + 1 2 — 3 x + 1 2 + 3
Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида
x 4 + 4 x 3 + 6 x 2 + 4 x — 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 — 3 = x + 1 4 — 3 = = x + 1 4 — 3 = x + 1 2 — 3 x + 1 2 + 3 = = x + 1 — 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3
Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .
Займемся преобразованием выражения. Получаем, что
x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 — 2 = ( x + 2 ) 3 — 2
Необходимо применить формулу сокращенного умножения разности кубов. Получаем:
x 3 + 6 x 2 + 12 x + 6 = = ( x + 2 ) 3 — 2 = = x + 2 — 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 — 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3
Способ замены переменной при разложении многочлена на множители
При замене переменной производится понижение степени и разложение многочлена на множители.
Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .
По условию видно, что необходимо произвести замену y = x 3 . Получаем:
x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6
Корни полученного квадратного уравнения равны y = — 2 и y = — 3 , тогда
x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3
Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:
x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 — 2 3 x + 4 3 x + 3 3 x 2 — 3 3 x + 9 3
То есть получили искомое разложение.
Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.
Разложение квадратного трёхчлена на множители
Если один (или оба) корня квадратного уравнения целые, то полезным навыком становится разложение на множители «в уме», с помощью теоремы Виета.
Навык этот не простой, и если у вас сразу не получится, не расстраивайтесь.
Рассмотрим следующий трёхчлен: $x^2+8x+15$
Если корни трёхчлена существуют, то их произведение равно 15.
Прикинем «в уме» соответствующие пары натуральных чисел:
В трёхчлене $c \gt 0$, значит корни одного знака, и в построении b участвует сумма этих корней. Из пары (1;15) сумма 8 не выходит, а вот из пары (3;5) — получается.
Для выбранной пары (3;5) запишем разложение, пока без знаков:
Теперь видно, что знаки в скобках – два плюса:
Рассмотрим другой трёхчлен: $x^2+2x-35$
Пары натуральных чисел, дающие произведение 35:
В трёхчлене $c \lt 0$, значит корни разных знаков, и в построении b участвует разность этих корней. Из пары (1;35) разность 2 не выходит, а вот из пары (5;7) — получается.
Для выбранной пары (5;7) запишем разложение, пока без знаков:
Теперь видно, что 7 должно быть с плюсом, а 5 – с минусом:
Обобщим алгоритм разложения по теореме Виета.
На входе: приведенный квадратный трёхчлен $x^2+bx+c$
Задача: разложить трёхчлен на множители при гипотезе, что корни — целочисленные
Шаг 1. Записать все пары натуральных чисел (m;n), дающих в произведении c.
Шаг 2. Если $c \gt 0$, то из всех пар выбрать ту, сумма которой даёт b.
Если $c \lt 0$, то из всех пар выбрать ту, разность которой даёт b.
Если выбрать пару не удаётся, данный алгоритм не подходит, и нужно приступить к разложению с помощью дискриминанта.
Шаг 3. Для выбранной пары записать разложение без знаков в виде:
Сопоставляя левую и правую части, окончательно расставить знаки в скобках.
Шаг 4. Работа завершена.
Предложенный алгоритм позволяет не только раскладывать на линейные множители трёхчлены, но и находить их корни, т.е. решать соответствующие квадратные уравнения.
Не забывайте менять знаки при записи решений уравнения!
Решаем $x^2+8x+15 = 0$. Получаем (x+3)(x+5) = 0. Корни $x_1 = -3, x_2 = -5$.
Решаем $x^2+2x-35 = 0$. Получаем (x-5)(x+7) = 0. Корни $x_1 = 5, x_2 = -7$.
При некотором опыте, можно наловчиться раскладывать не только приведенные трёхчлены, например:
$$ 5x^2-14x-3 = (5x+1)(x-3), 3x^2+13x-10 = (3x-2)(x+5), $$
В этих случаях алгоритм усложняется за счёт дополнительных вариантов расстановки коэффициентов при переменной в скобках.
Примеры
Пример 1. Разложите квадратный трёхчлен с помощью дискриминанта:
$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $
$ x = \frac<-7 \pm 9> <4>= \left[ \begin
Получаем: $2x^2+7x-4 = 2(x+4) \left(x- \frac<1> <2>\right)$
Можно также записать: $2x^2+7x-4 = (x+4)(2x-1)$
$ D = 20^2-4 \cdot 3 \cdot (-7) = 400+84 = 484 = 22^2 $
$x = \frac<-20 \pm 22> <6>= \left[ \begin
Получаем: $3x^2+20x-7 = 3(x+7) \left(x-\frac<1> <3>\right)$
Можно также записать: $3x^2+20x-7 = (x+7)(3x-1)$
$D = 19^2-4 \cdot 4 \cdot (-5) = 361+80 = 441 = 21^2$
$ x = \frac<19 \pm 21> <8>= \left[ \begin
Получаем: $4x^2-19x-5 = 4 \left(x+ \frac<1> <4>\right)(x-5)$
Можно также записать: $4x^2-19x-5 = (4x+1)(x-5)$
$ D = (\sqrt<2>)^2-4 \cdot \frac<1> <2>= 2-2 = 0, x = \frac<\sqrt<2>> <2>$
Получаем: $x^2-\sqrt <2>x+ \frac<1> <2>= \left(x- \frac<\sqrt<2>> <2>\right)^2 $
Пример 2*. Разложите трёхчлены на множители подбором по теореме Виета:
Пары множителей: (1;12),(2;6),(3;4)
$c = 12 \gt 0 \Rightarrow$ выбираем из пар ту, что в сумме дает b = 7. Это пара (3;4).
Записываем разложение без знаков: $(x…3)(x…4) = x^2+7x+12$
Расставляем знаки, результат: $x^2+7x+12 = (x+3)(x+4)$
Пары множителей: (1;18),(2;9),(3;6)
$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b = 3. Это пара (3;6).
Записываем разложение без знаков: $(x…3)(x…6) = x^2+3x-18$
Расставляем знаки, результат: $x^2+3x-18 = (x-3)(x+6)$
Пары множителей: (1;77),(7;11)
$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b=4. Это пара (7;11).
Записываем разложение без знаков: $(x…7)(x…11) = x^2+4x-77$
Расставляем знаки, результат: $x^2+4x-77 = (x-7)(x+11)$
Одна пара множителей (1;3)
Возможные разложения с коэффициентом:
$c = -3 \lt 0$, в скобках разные знаки.
Перебираем четыре возможных варианта и получаем:
$$2x^2-x-3 = (2x+3)(x-1) = 2 \left(x+ \frac<3> <2>\right)(x-1)$$
Пример 3. Сократите дробь.
Разложение на множители проводим по формулам сокращенного умножения, с помощью дискриминанта или по теореме Виета.