Как найти периметр треугольника по координатам
Перейти к содержимому

Как найти периметр треугольника по координатам

  • автор:

 

Периметр треугольника через вершины координат

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.

Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр:

Как узнать периметр треугольника

Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.

Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.

P = a + b + c, где a, b, c — длина стороны.

Если известна площадь и радиус вписанной окружности:

P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.

Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:

P = √ b 2 + с 2 — 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.

Если известна одна сторона в равностороннем треугольнике:

P = 3 * a, где a — длина стороны.

Все стороны в равносторонней фигуре равны.

Если известна боковая сторона и основание в равнобедренном треугольнике:

P = 2 * a + b, где a — боковая сторона, b — основание.

Боковые стороны в равнобедренной фигуре равны.

Если известна боковая сторона и высота в равнобедренном треугольнике:

P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.

Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.

Если известны катеты в прямоугольном треугольнике:

P = √ a 2 + b 2 + (a + b), где a, b — катеты.

Катет — одна из двух сторон, которые образуют прямой угол.

Если известны катет и гипотенуза в прямоугольном треугольнике:

P = √ c 2 — a 2 + (a + c), где a — любой катет, c — гипотенуза.

Гипотенуза — сторона, которая лежит напротив прямого угла.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Периметр многоугольника по его координатам

Координаты многоугольника, разделенные пробелами в формате x+iy
Вы ввели следующие координаты многоугольника
Периметр многоугольника (в условных единицах)

В данной статье мы окажем помощь в расчете периметра многоугольника, заданного координатами его вершин. Несмотря на то, что сам принцип расчета прост, при большом количестве вершин, Вам придется делать несколько раз одни и те же вычисления, то есть выполнять рутинную операцию. А я страсть как не люблю рутину и Вам ей заниматься не советую.

Формула которая используется проста:

Если извеcтны две точки с координатами (x1,y1) и (x2,y2) то расстояние между ними

эту формулу необходиом применить к каждой паре координат соседних вершин многоугольника. И как только мы закончим обход и просуммировав все длины мы получим наш периметр.

 

Теперь что касается ввода данных. В предыдущем материале Площадь многоугольника по координатам онлайн ввод координат осуществляется через двоеточие и пробел, что не совсем удобно.

В этой статье, для упрощения и для обощения ( на комплексное представление) коодинаты будут задаватся в виде комплексных чисел.

Для тех кто с комплексными числами никогда не сталкивался, хочу успокоить — ничего страшного.

И если Вы координату раньше представляли как (x,y), то в комплексном представлении эта же координата видится уже как x+iy

Для ввода это немного проще, так как в дальнейшем при написании статьи про линейные преобразования фигуры на плоскости, это форма ввода нам пригодится, да и понимать ту статью Вам будет уже намного проще.

Теперь немного примеров:

Определим периметр многоугольника заданного координатами А (0; 0); В (8; 2); С (–2; 6).

Так как три вершины то это треугольник.

Введем данные в поле ввода( разделяя каждую координату вершины пробелом) в таком формате 0+0i 8+2i -2+6i

Расчет треугольника по координатам вершин

Этот онлайн калькулятор по введенным координатам вершин вычисляет параметры треугольника: длины сторон, углы, периметр и площадь.

Этот онлайн калькулятор предназначен для быстрого вычисления ряда характеристик треугольника по координатам его вершин. Вы вводите координаты вершин A, B и C. Калькулятор рассчитывает по координатам следующие величины:

Обозначения треугольника

  • длину стороны a — стороны, противолежащей вершине А
  • длину стороны b — стороны, противолежащей вершине B
  • длину стороны c — стороны, противолежащей вершине C
  • значение угла α при вершине A
  • значение угла β при вершине B
  • значение угла γ при вершине C
  • периметр треугольника
  • площадь треугольника

Если нужно что-то еще, пишите в комментариях, добавим. Формулы расчета значений треугольника описаны под калькулятором.

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Примечание: дробные числа записывайте
через точку, а не запятую.

Расчет треугольника по координатам вершин

Этот онлайн калькулятор по введенным координатам вершин вычисляет параметры треугольника: длины сторон, углы, периметр и площадь.

Этот онлайн калькулятор предназначен для быстрого вычисления ряда характеристик треугольника по координатам его вершин. Вы вводите координаты вершин A, B и C. Калькулятор рассчитывает по координатам следующие величины:

Обозначения треугольникаОбозначения треугольника

  • длину стороны a — стороны, противолежащей вершине А
  • длину стороны b — стороны, противолежащей вершине B
  • длину стороны c — стороны, противолежащей вершине C
  • значение угла α при вершине A
  • значение угла β при вершине B
  • значение угла γ при вершине C
  • периметр треугольника
  • площадь треугольника

Если нужно что-то еще, пишите в комментариях, добавим. Формулы расчета значений треугольника описаны под калькулятором.

Как найти периметр треугольника по координатам

Найдите периметр треугольника ABC , если известны координаты его вершин A (–3, 5), B (3, –3) и точки M (6, 1), являющейся серединой стороны BC .

Подсказка

Воспользуйтесь формулами для координат середины отрезка и формулами для расстояния между двумя точками.

Решение

Пусть ( x, y ) – координаты вершины C . По условию ½ (x + 3) = 6, ½ (y – 3) = 1, откуда x = 9, y = 5.
По формуле расстояния между двумя точками находим стороны треугольника ABC : AB = = = 10,
BC = = = 10, AC = 9 – (–3)) = 12. Следовательно, PABC = 10 + 10 + 12 = 32.

Периметр многоугольника по его координатам

В данной статье мы окажем помощь в расчете периметра многоугольника, заданного координатами его вершин. Несмотря на то, что сам принцип расчета прост, при большом количестве вершин, Вам придется делать несколько раз одни и те же вычисления, то есть выполнять рутинную операцию. А я страсть как не люблю рутину и Вам ей заниматься не советую.

Формула которая используется проста:

Если извеcтны две точки с координатами (x1,y1) и (x2,y2) то расстояние между ними

эту формулу необходиом применить к каждой паре координат соседних вершин многоугольника. И как только мы закончим обход и просуммировав все длины мы получим наш периметр.

Теперь что касается ввода данных. В предыдущем материале Площадь многоугольника по координатам онлайн ввод координат осуществляется через двоеточие и пробел, что не совсем удобно.

В этой статье, для упрощения и для обощения ( на комплексное представление) коодинаты будут задаватся в виде комплексных чисел.

Для тех кто с комплексными числами никогда не сталкивался, хочу успокоить — ничего страшного.

И если Вы координату раньше представляли как (x,y), то в комплексном представлении эта же координата видится уже как x+iy

Для ввода это немного проще, так как в дальнейшем при написании статьи про линейные преобразования фигуры на плоскости, это форма ввода нам пригодится, да и понимать ту статью Вам будет уже намного проще.

Теперь немного примеров:

Определим периметр многоугольника заданного координатами А (0; 0); В (8; 2); С (–2; 6).

Так как три вершины то это треугольник.

Введем данные в поле ввода( разделяя каждую координату вершины пробелом) в таком формате 0+0i 8+2i -2+6i

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *