Чем отличается теорема от аксиомы
Перейти к содержимому

Чем отличается теорема от аксиомы

  • автор:

 

Чем отличается теорема от аксиомы

Кристина Васюкова

Чем теорема отличается от аксиомы? И мне вопросик теорема вопросик аксиома

Теоре́ма (др.-греч. θεώρημα — «зрелище, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.

В математических текстах теоремами обычно называют только достаточно важные утверждения. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.

Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, не доказываемое в рамках данной теории и лежащее в основе доказательства других ее положений.[1] В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[1] Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии. Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории. Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[2]

Прочитайте и сами сделайте вывод

Теорема — это утверждение и теорема требует доказательства. А аксиома — это как должное, аксиома не требует доказательств. Над теоремой работают учёные годами, что то доказывают. При этом пользуются аксиомами. В быту аксиома: стул — на нём сидят, а стол — за ним сидят (это чтоб понятней было)

Выше Неба

Теорема — это утверждение и теорема требует доказательства. А аксиома — это как должное, аксиома не требует доказательств. Над теоремой работают учёные годами, что то доказывают.

Юлия Сергеевна, я точно не помню. Там чего-то без доказательств, а к чему-то доказательство нужно. Или там где-то что-то однозначно, а что-то под сомнение ставится.

Владимир Дубровко

Если коротко,то. Теорема-утверждение,для которого требуется доказательство.Оксиома-не требует доказательства.

Что такое аксиома и теорема

Решение всех задач в геометрии построено на логических рассуждениях. С их помощью мы решаем задачи или выводим новые доказательства.

Некоторые из утверждений в геометрии мы используем не задумываясь. Вспомним высказывание, которое мы слышим при самом первом знакомстве с геометрией:
«Через две точки можно провести прямую, и притом только одну».

Чтобы лучше понять сказанное, нарисуем наглядный рисунок, где прямая a пересекает точки A и B .

проведем прямую через две точки

Казалось бы, очевидно, если попытаться провести еще одну прямую b через точки A и B , она совпадет с прямой a .

проведем две прямые через две точки

Но можно ли считать подобное рассуждение доказательством?

Важно! Галка

Дело в том, что утверждение, которое в своем доказательстве
не опирается на выстроенную логическую цепочку доказательств, нельзя считать доказанным .

Другими словами, утверждение «Через две точки можно провести прямую, и притом только одну» не является доказанным только потому, что мы нарисовали рисунок и по рисунку «на глаз» стало все понятно.

В геометрии действует принцип: «Не верь глазам своим, пока не докажешь утверждение с помощью рассуждений».

Но что нам в таком случае делать? Ведь при решении задач мы используем какие-то очевидные утверждения, не задумываясь об их истинности.

Нам остается, только принять их на веру без доказательств . Иначе мы не сможем доказывать следующие утверждения, чтобы двигаться дальше.

Что такое аксиома

Слово аксиома произошло от древнегреческого слова «axioma» — утверждение, положение.

Запомните! !

Аксиома — утверждение , которое не требует доказательств.

С точки зрения учащихся, аксиома — лёгкий способ получить отличную оценку. Достаточно просто выучить формулировку. Ведь никаких доказательств для аксиомы учить не требуется.

Всего в геометрии насчитывается около 15 аксиом. В школьном курсе используются далеко не все. Некоторые из них используются в школьном курсе как само собой разумеющееся для нас. Приведем некоторые примеры довольно известных аксиом из школьного курса геометрии:

  • через любые две точки проходит прямая, и притом только одна;
  • через точку, не лежащую на данной прямой, проходим только одна прямая, параллельная данной;
  • если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки;
  • любая фигура равна самой себе.

Что такое теорема

Совсем по-другому обстоят дела с теоремами. Слово теорема происходит от древнегреческого слова «theorema» — смотреть, рассматривать какое-либо утверждение.

Запомните! !

Теорема — утверждение , которое требует доказательства.

Теоремы менее «любимы» учащимися, чем аксиомы. Если учитель попросит рассказать теорему, будет недостаточно, как для аксиомы, сообщить только её формулировку. Потребуется также дать доказательство теоремы.

Примеры формулировок теорем:

 

  • сумма углов треугольника равна 180 градусов;
  • площадь прямоугольника равна произведению его смежных сторон;
  • теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Важно! Галка

Формулировки аксиом и теорем необходимо учить строго наизусть
без искажений .

Каждое слово или предлог в формулировке играет существенную роль в передаче смысла выражения. Даже просто поменяв порядок слов можно сильно изменить смысл утверждения.

Помните, что все формулировки в геометрии были выверены несколькими тысячами лет развития математики лучшими умами планеты и не терпят никаких словесных изменений.

Что такое лемма

Среди теорем выделяют такие теоремы, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма происходит от древнегреческого слова «lemma» – предположение.

Запомните! !

Лемма — это вспомогательная теорема , с помощью которой доказываются другие теоремы.

  • если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Что такое следствие в геометрии

Запомните! !

Следствие — утверждение, которое выводится непосредственно из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать .

Приведем примеры следствий из аксиомы о параллельности прямых:

  • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
  • если две прямые параллельны третьей прямой, то они параллельны.

Если подытожить все вышесказанное, то сравнивая геометрию с высотным домом, можно представить, что:

  • аксиомы — фундамент дома;
  • теоремы — основные кирпичи дома;
  • леммы и следствия — вспомогательные кирпичи для упрочнения конструкции.

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя с самых основ (аксиом) к теоремам.

Невозможно понять геометрию 9 и 10 класса, не выучив аксиомы и теоремы 7 и 8 класса.

Аксиома и теорема

Аксиома — это утверждение, которое считается истинным, основанное на логике; однако он не может быть доказан или продемонстрирован, потому что он просто считается само собой разумеющимся. В принципе, все, что объявлено истинным и принятым, но не имеет доказательств или имеет некоторый практический способ доказать это, является аксиомой. Его иногда называют постулатом или предположением.

Основой аксиомы для его истины часто не учитывается. Это просто так, и нет необходимости обсуждать дальше. Тем не менее, многие аксиомы по-прежнему бросают вызов различным умом, и только время покажет, являются ли они сумасшествиями или гениями.

Аксиомы могут быть классифицированы как логические или нелогичные. Логические аксиомы являются общепринятыми и действительными операторами, в то время как нелогичные аксиомы обычно являются логическими выражениями, используемыми при построении математических теорий.

Гораздо легче выделить аксиому в математике. Аксиома часто является утверждением, которое считается истинным ради выражения логической последовательности. Они являются основными строительными блоками доказательств. Аксиомы служат отправной точкой для других математических утверждений. Эти утверждения, полученные из аксиом, называются теоремами.

Теорема, по определению, является доказательством, основанным на аксиомах, других теоремах и некотором множестве логических связок. Теоремы часто подтверждаются строгими математическими и логическими рассуждениями, и процесс к доказательству, конечно, будет включать в себя одну или несколько аксиом и другие утверждения, которые уже признаны истинными.

Теоремы часто выражаются как производные, и эти дифференцирования считаются доказательством выражения. Две составляющие доказательства теоремы называются гипотезой и заключением. Следует отметить, что теоремы чаще всего оспариваются, чем аксиомы, поскольку они подвержены большему количеству интерпретаций и различным методам деривации.

Нетрудно рассмотреть некоторые теоремы как аксиомы, так как существуют другие утверждения, которые интуитивно считаются истинными. Однако они более адекватно рассматриваются как теоремы, из-за того, что они могут быть получены с помощью принципов дедукции.

1. Аксиома — это утверждение, которое считается истинным без каких-либо доказательств, в то время как теория должна быть доказана до того, как она будет считаться истинной или ложной.

2. Аксиома часто самоочевидна, в то время как теории часто потребуются другие утверждения, такие как другие теории и аксиомы, чтобы стать действительными.

3. Теоремы естественно оспариваются больше, чем аксиомы.

4. В принципе, теоремы производятся из аксиом и набора логических связок.

5. Аксиомы являются основными строительными блоками логических или математических утверждений, поскольку они служат отправными точками теорем.

6. Аксиомы могут быть классифицированы как логические или нелогичные.

7. Две компоненты доказательства теоремы называются гипотезой и заключением.

Разница между аксиомой и теоремой

По сути, аксиомы — это предположения, которые не нужно доказывать. Они обычно принимаются как истинные, либо потому, что в них нет противоречий, либо потому, что мы, очевидно, знаем, что это правда. Аксиома слова происходит от греческого слова, которое означает «то, что считается достойным или подходящим» или «то, что оценивается как очевидное». Аксиома может иногда использоваться взаимозаменяемо с постулатом или предположением.

Теорема, с другой стороны, нуждается в доказательстве. Dictionary.com определяет теорему как:

  • Математика. Теоретическое суждение, утверждение или формула, воплощающие что-то, что нужно доказать из других суждений или формул.
  • Правило или закон, особенно тот, который выражается уравнением или формулой.
  • Логика. Предложение, которое может быть выведено из предпосылок или предположений системы.
  • Идея, убеждение, метод или утверждение обычно принимаются как истинные или стоящие без доказательств.

Теорема — это утверждение, которое было доказано путем тестирования или расчета. Это может быть доказано на основе теорем, которые были ранее доказаны или на основе аксиом. Теоремы состоят из двух частей: гипотезы и выводы.

Безумие против P90X

Безумие и P90X by Beachbody — это последняя новинка среди фитнес-программ для занятий спортом дома. Каждая программа поставляется с набором DVD-дисков с инструкциями и планом питания. Хотя обе програм.

Читать далее

AirPlay против Sonos

AirPlay и ono — это системы, предназначенные для потоковой передачи музыки и других медиафайлов по всему дому через сеть Wi-Fi. Самая большая разница между этими двумя системами заключается в том, что.

Читать далее

SRAM против Shimano

Производители комплектующих для велосипедов himano и RAM оба предлагают широкий спектр продуктов от компонентов начального уровня до компонентов высокого класса для конкурентов. RAM базируется в Чикаг.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *