Tny264gn как проверить мультиметром
Перейти к содержимому

Tny264gn как проверить мультиметром

  • автор:

 

Tny264gn как проверить мультиметром

Электронный модуль стиральных машин BOSCH серии MAXX5 (часть 2)

Назначение выводов ИМС TNY264GN приведено в таблице 1. На рис. 4 приведены расположение выводов микросхемы в корпусе DIP-8B и ее структурная схема.

Таблица 1. Назначение выводов микросхемы TNY264GN

Номер вывода (DIP-8) Обозначение Назначение
1 BP (BYPASS) Выход внутреннего стабилизатора напряжения 5,8 В
2, 3, 7, 8 S (SOURSE) Исток внутреннего силового МОП-транзистора. Общий для элементов внутреннего преобразователя в составе ИМС
4 EN/UV (ENABLE/UNDER VOLTAGE) Выполняет две функции: вход разрешения работы преобразователя и контроля снижения выходного напряжения ИП
5 D (DRAIN) Сток внутреннего силового МОП-транзистора. С этого вывода также обеспечивается питание элементов схемы управления в составе микросхемы

Отметим важную, с точки зрения электробезопасности, особенность системы питания ЭМ — гальваническая развязки от питающей сети отсутствует: сетевая шина N объединена со схемным корпусом.

Элементы управления исполнительными устройствами СМ

На плате ЭМ расположены следующие элементы управления исполнительными устройствами СМ:

Симисторы T18, T16, Тхх (опция, см. рис. 2), которые управляют клапанами залива воды — основной, предварительной стирки и горячей воды соответственно. Симистор Txx опционально управляет клапаном горячей воды.

Симистор T18 управляется с выв. 40 МК IC1 (через буферный каскад на транзисторе Т17), симистор T16 — с выв. 37 (через буферный каскад Т15), а симистор Тхх — с выв. 41 IC2. Клапаны залива воды основной и предварительной стирки подключены к соединителю Х11-6 (рис. 2, 3), а клапан горячей воды — к соединителю Х11-7. Под компоненты цепи управления клапаном горячей воды (симистор Тхх и др.) на плате ЭМ выделены контактные площадки. На рис. 3 показана версия ЭМ, в которой выход управления клапаном горячей воды (выв. 41 IC1) соединен с общей шиной через резисторы.

Симистор T13 служит для управления помпой. Он управляется с выв. 34 МК через буферный каскад на транзисторе Т12.

Симистор T11 служит для управления УБЛ СМ. Он управляется с выв. 33 МК через буферный каскад на транзисторе Т10.

Симистор T03 служит для управления приводным мотором. Он управляется с выв. 3 МК через буферный каскад на транзисторе T02.

1. SMD-компоненты в составе ЭМ не имеют позиционных обозначений, поэтому на рис. 3 они обозначены произвольно.

2. Номиналы SMD-резисторов ЭМ на рис. 3 обозначены в виде промышленных кодов, которые приняты производителями при маркировке данных компонентов.

3. При подаче сетевого напряжения на термотаблетку УБЛ замыкается ее контактная группа (также в составе УБЛ). С нее подается питание на приводной мотор (сетевая шина L), клапаны залива воды и помпу. Со стороны сетевой шины N мотор управляется соответствующими портами МК через симистор T03 (см. выше), клапаны — симисторами Т16, Т18, Тхх, а помпа — через симистор Т13.

4. Помпа может автоматически включаться при замыкании контактной группы прессостата „ПЕРЕЛИВ» независимо от состояния управляющего симистора Т13. Это сделано в целях безопасности, например, при неконтролируемом заливе воды в бак.

Статья доступна только в печатном варианте. Вы можете приобрести свежие номера Р&С или оформить подписку в редакции.

© Издательство «Ремонт и Сервис 21», 1998-2007. Все права защищены.
Воспроизведение материалов сайта, журналов «Ремонт & Сервис», «Покупаем от А до Я&#187 и справочника «Ремонт и сервис электронной техники» в любом виде, полностью или частично, допускается только с письменного разрешения издательства «Ремонт и Сервис 21».

Как проверить джойстик на пк без игры

Существует несколько способов, позволяющих проверить микросхему на работоспособность.

Внешний осмотр

Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.

Проверка работоспособности с помощью мультиметра

Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.

Проверка работоспособности микросхемы с помощью мультиметра

Выявление нарушений в работе выходов

Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.

Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.

Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.

Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.

Три варианта действий

Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:

  1. внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
  2. проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
  3. проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.

Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.

Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.

Влияние разновидности микросхем на способы проверки

Способ и сложность проверочных работ во многом зависит от типа схемы:

    Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе. На основании этих измерений делается вывод об исправности системы.

Микросхемы с тремя выводами

При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.

Причины неисправности

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

снимаем заряд с конденсатора

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

проверка конденсатора мультиметром

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

конденсатор показывает сопротивление

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

проверка пускового конденсатора

На дисплее прибора наблюдаем как начинает изменятся сопротивление:

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

разъем CX мультиметра

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

проверка емкости С104K

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

полярность конденсатора

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

проверка емкости конденсатора

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

емкость соответствует номинальной

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

как проверить емкость конденсатора мультиметром

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе. Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме. Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера. Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
      аналоговый покажет бесконечность, стрелка не двинется;
  2. цифровой или никак не отреагирует или высветит несколько МОм.
  3. При прозвонке анод-управляющий электрод:
      аналоговый покажет от нескольких до десятков кОм;
  4. цифровой выдаст такие же цифры.
  5. При прозвонке катод-управляющий электрод:
      то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи. Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Проведение проверки варистора мультиметром

Для проведения этой уникальнейшей операции, нам необходимы следующие приспособления:

  • Первым делом, конечно же отвертка (обычно требуется фигурная). Чтобы пробраться до платы, необходимо вскрыть корпус устройства, а тут как известно без неё не обойтись.
  • Требуется запастись будет еще и щёткой. Она нужна будет, чтобы очистить плату от накопившейся пыли. Из практики уже известно, что в блоках питания всегда ее скапливается очень много, особенно если устройство оснащено собственным охлаждением (вентилятором), характерный пример, – блок питания компьютера.
  • Важная вещь в подобной процедуре — паяльник. Без него никак. Нужно отпаять и обратно припаять варистор. Как правило внутри силовых блоков большие дорожки на платах и совершенно нет мелких деталей, поэтому можете смело пользоваться паяльником до 75 Вт.
  • Канифоль и припой (наверное, наиболее необходимое. Припаять обратно деталь без них не получится).
  • Мультиметр (электронный или аналоговый), чтобы иметь возможность замерить сопротивление.

Как только весь инструментарий будет готов, можно приступать к операции. Главное придерживайтесь схемы и все получится как нужно:

  1. Вскрываем устройство. Детально рассказать, как это сделать сложновато, ведь конструкции разных приборов разнятся между собой. В любом случае, всю эту техническую информацию Вы можете найти в паспорте устройства, в интернете (на различных тематических форумах и сайтах).
  2. Как только доберётесь до печатной платы, постарайтесь очистить её от пыли. Работайте как можно более аккуратно, чтобы не нанести вред радиодеталям. Отмечены случаи, когда излишнее усердие наносило больше вреда, чем пользы, так как щетина на щетке царапала тот или иной компонент схемы.
  3. Когда с пылью будет покончено, найдите варистор. Его отличает настолько специфический вид, что перепутать его невозможно.
  4. Найдя на плате варистор, прежде всего тщательно осмотрите его. Если видны трещинки, какие-либо сколы, либо другие механические повреждения корпуса, то это уже говорит о неисправности.
  5. Если были обнаружена какие-либо нарушения целостности корпуса, то выпаиваем повреждённый элемент, а вместо него ставим точно такой же или аналогичный. Найти замену Вы можете самостоятельно, ориентируясь на указанную на варисторе информацию, либо обратитесь к специалисту.
  6. Если при тщательном зрительном осмотре видимых повреждений не обнаружено, то следует пустить в ход мультиметр, конечно предварительно будет необходимо выпаять деталь с платы. Цепляем щупы мультиметра к нашей детали и выставляем режим замера максимального сопротивления.
  7. Щупы тестера прижимаем к ножкам варистора и замеряем сопротивление. В идеале мультиметр должен показать высокие значения до бесконечности. Если перед Вами другое значение, то это говорит о неисправности варистора и его необходимо заменить.
  8. Во время измерений, внимательно следите, чтобы не коснуться руками щупов мультиметра. Иначе он будет показывать сопротивление вашего тела. Если есть необходимость заменяем варистор и собираем корпус устройства обратно.

Измерение сопротивления и проверка варистора, может быть осуществлена двумя способами.

Вариант 1

Первоначально проводим визуальный осмотр. Для этого отключаем аппарат от питания, вскрываем корпус и определяем где находится предохранитель. Далее извлекаем его и проверяем. Если предохранитель перегорел или негоден, то он заменяется. И только когда мы проверили предохранитель и заменили, переходим к нахождению и тестированию варистора. Его сложно не заметить, так как он выкрашен обычно в красные, синие или жёлтые цвета. Это маленький дискообразный элемент. Обычно крепится на предохраняющем держателе.

Далее отсоединяем любой из проводов, для этого нагреваем его паяльником и извлекаем варистор с платы при помощи плоскогубцев.

Сама проверка основана на замере показателя сопротивления: включаем тестер, переводим его в позицию замера сопротивления; фиксируем жала щупов на выводах варистора. Далее проводится замер.

Вариант 2

Другой способ берет за основу данные из инструкции или спецификации устройства для определения показателей нормальной работы варистора. За символом «CH», которым обозначается нелинейное сопротивление, указано значение, которое производитель заложил в конструкцию или которые свойственны тому материалу, из которого изготовлен варистор. Значения, сопровождаемые маркировкой «B±…%», показывают уровень предельного сопротивления и допуск.

Если для элемента не предоставлена спецификация, наиболее подходящим будет именно первый вариант.

Viper12a схема включения в стиральной машине

Симистором называют полупроводниковый выключатель для переменного тока. Часто встречается международное название TRIAC, что означает то же самое (TRIode for Alternate Current). Чтобы разобраться в устройстве симистора (симметричного тиристора) и узнать, как проверить симистор, важно сначала понять, что он состоит из двух встречно-параллельно включенных тиристоров (если совсем правильно, тринисторов, но тиристор употребляется чаще), имеющих общую цепь управления. Теперь осталось понять, что такое тиристор.

Что это такое

Как показано на Рис.2, тиристор составлен из двух транзисторов разной проводимости: npn и pnp, включенных «навстречу» друг-другу. Если приоткрыть один из транзисторов (npn), приложив между его эмиттером и базой напряжение порядка 0,6 … 0,8 В (напряжение открывания кремниевого p-n перехода), то в коллекторе потечет ток.

Появившееся напряжение между базой и эмиттером второго транзистора начнет открывать его и, одновременно, через коллектор второго транзистора, — первый транзистор. Все это будет лавинообразно нарастать с очень большой скоростью, и теперь уже независимо от начального напряжения. Достаточно только «подтолкнуть» процесс открывания небольшим начальным импульсом.

Для закрывания тиристора необходимо понизить ток в его цепи до минимальной величины, называемой током удержания, и чуть ниже. Поскольку переменный ток так себя и ведет в каждом полупериоде, то каждая половинка симистора будет закрываться, когда меняется полярность в цепи тока.

Схема симистора показана на рисунке Рис. 3 слева, а его физическое устройство, — справа. Напоминаем, что это два встречно-параллельно включенных тиристора. Выводы Т1 и Т2 уже нельзя назвать анодом и катодом, в цепи переменного тока они становятся равноправными. Однако, в цепи постоянного тока триак ведет себя как обычный тиристор и даже содержит «запасной», хотя для его использования придется поменять полярность управляющего напряжения.

Дополнительная информация! Кстати говоря, как тиристор, так и симистор, могут быть составлены из обычных транзисторов разной структуры, имея ту же работоспособность. Главное, чтобы они были рассчитаны на требуемый ток и допустимое напряжение. Но на практике это не используется, с очень давних времен (1960-е) тиристоры стали выпускать в виде готовых приборов в одном корпусе.

Современный тиристор или симистор средней мощности выглядит, как показано на Рис. 4.

Характеристики

Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:

  • Напряжение обратного пробоя, Uобр, В;
  • Напряжение закрытого состояния, Uзс, В;
  • Ток открытого состояния средний, Iос, А;
  • Время включения, tвк, мкс;
  • Время выключения, tвык, мкс;
  • Ток открытого состояния импульсный, Iос, А;
  • Ток закрытого состояния, Iзс, мА;
  • Обратный ток, Iобр, мА;
  • Напряжение открытого состояния, Uос, В;
  • Управляющее напряжение, Uупр, В;
  • Ток управления, Iупр, мА;
  • Скорость нарастания напряжения, dU/dt, В/мкс;
  • Скорость нарастания тока, dI/dt, А/мкс.

Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.

Проверка исправности

Если принять во внимание уже написанное в этой статье, то такую проверку выполнить несложно. Как проверить симистор? Это можно сделать несколькими способами. Самый простой проверить исправность, — это способ замены. Вместо подозреваемого симистора устанавливаем заведомо исправный, и смотрим, как будет работать схема. Но обычно симисторы проверяют при помощи мультиметра или тестера, иногда без отключения от схемы. Тестером называют мультиметр старого типа, стрелочный. Кроме того, есть еще один способ проверки, при помощи тумблера, лампочки и кнопки. Рассмотрим два последних способа проверять триак более подробно.

Проверка с помощью тестера

Симистор имеет три вывода, которые потребуется попарно прозвонить. В этом и состоит проверка. Включите тестер в режим измерения сопротивления на диапазоне килоом и установите его стрелку на нуль, замкнув между собой щупы. В старых стрелочных приборах это необходимая операция. Полезно знать, какой из щупов тестера имеет положительную полярность, — это позволит определить вид p-n перехода, связанного с управляющим электродом.

Поскольку конструкция симисторов бывает разной, каким-либо образом отметьте проверочный симитор, любым способом, это просто условность. Затем выполните прозвонку всех трех возможных пар электродов, меняя полярность их подключения, и результаты запишите в таблицу. В зависимости от состояния прибора, и даже типа, вы получите различные результаты. Проверка облегчается, если вы заранее знаете тип прибора (при недостатке знаний и опыта можно спутать с транзистором). Поскольку речь в статье идет именно о симисторе (триаке), то дальше будем считать, что мы проверяем именно его.

Некоторые типичные сопротивления при проверке:

  • 0Ом — пробой, короткое замыкание;
  • 50 … 100Ом — открытый (прямосмещенный) p-n переход;
  • 1 … 10кОм — утечка, испорчен кристалл полупроводника;
  • 1МОм … ∞ — запертый (обратносмещенный) p-n переход или обрыв.

Признак исправности симистора — есть пара выводов, дающая при любой полярности щупов тестера признаки исправного p-n перехода, при этом с третьим выводом любой из двух показывает очень большое сопротивление. Остальные случаи показывают, как минимум, очень сомнительное состояние прибора.

Назначение и устройство

Симисторы – это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение.

По принципу действия они подобны аналогичны тиристорам. Отличаются лишь тем, что симистор представляет собой два тиристора, соединённых встречно-параллельно. Обозначение на схеме вы видите ниже.

По определению они часто используются в релейном режиме – простыми словами работают на «включение» и «отключение», кстати такие реле называются полупроводниковыми.

Отличия от электромеханического следующие — быстродействие на порядки выше, нет контактов, в связи с чем большая долговечность. Главное условие долгой эксплуатации – обеспечить номинальный тепловой режим и нагрузку.

СМА BEKO WMD 77100, Не исправность ИП

Forum for Electronics. Welcome, Guest. Please login or register. Did you miss your activation email? Пожалуйста, помогите.. Author Topic: [Перенесено] ищу схему Read times. Может быть, мы можем решить эту проблему без специального схеме.

Здесь картина Есть некоторые схемы, чтобы соответствовать этому приложению. Или нужно сравнить диаграммы IC примеры распиновку я отправил. Большое спасибо еще раз сэр ЖК-мониторы здесь на Филиппинах трудно найти.. Вы уже решили, о схеме типа, используемого для этого монитора? Здесь припоя братан области Может быть, это не TOP цепи Сообщение ясную картину, не текст, см.

Еще один вопрос, микросхема имеет в общей сложности 8 контактов в том числе, не подключен? Хороший день для всех коллег..

Для того чтобы найти подходящую замену и решить проблемы, вам нужно сначала иметь полную схему. Пока зеленой краской покрывают все области печатной платы, что это невозможно, чтобы получить четкое изображение, так что постарайтесь освещенных платы снизу и сделать несколько фотографий схемы. TOPPN, что будет замена для этой части? Возьмите несколько фотографий, как я просил и предоставить список всех доступных схем ИИП в вашем районе. На мой взгляд, это самый быстрый способ найти замену.

All rights reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Способы проверки

Для диагностики неисправностей электронной схемы нужно последовательно проверять её элементы. В первую очередь уделяют внимание силовым цепям, а именно всем полупроводниковым ключам. Для их проверки можно воспользоваться одним из способов:

  • мультиметром (омметром или прозвонкой);
  • батарейкой со светодиодом или лампочкой;
  • на стенде.

Для диагностики следует выпаять элемент, потому что при проверке любых компонентов электронных схем на исправность, не выпаивая с платы, есть вероятность неправильных измерений. Например, вы обнаружите короткое замыкание не проверяемого элемента, а соединённых с ним в цепи параллельно.

В любом случае вы можете проверить симистор и тиристор на исправность не выпаивая, а если найдете возможную неисправность – выпаять и провести измерения повторно.

С помощью мультиметра

Для проверки симистора на пробой с помощью тестера нужно перевести прибор в режим звуковой прозвонки.

В большинстве случаев прозвонка совмещена с проверкой диодов.

Типовое расположение выводов или как еще это называют — цоколевка, изображена на рисунке ниже. А1 и А2 (иногда T1, T2) – это силовые выводы, через них протекает больший ток в нагрузку, а G (gate) – это управляющий электрод. Цоколевка может отличаться, поэтому проверяйте её в даташите вашего симистора

(Горячее предложение) TNY264PN

Обязательно проверить возвратные диоды, включенные параллельно электродам коллектор-эмиттер силовых транзисторов. Эти действия, дают положительный результат в обнаружении только следствия неработоспособности всего блока, но причина неисправности в большинстве случаев находится гораздо глубже. Поэтому, если удается найти неисправный элемент, то желательно пройти все этапы проверок, перечисленные выше т. Проверку работоспособности такой микросхемы, например, TL рис. Напряжение подается на вывод 12 относительно выв. Все измерения тоже должны проводиться относительно выв. При подаче питания на микросхему контролируем напряжение на выв. В противном случае не исправен внутренний стабилизатор напряжения микросхемы.

Там и соболи, там и сибирское Мангазейское зимовье, по tnypn как проверить словам поморов-путешественников, — небольшое парусное грузовое.

Назначение и устройство

Симисторы – это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение.

По принципу действия они подобны аналогичны тиристорам. Отличаются лишь тем, что симистор представляет собой два тиристора, соединённых встречно-параллельно. Обозначение на схеме вы видите ниже.

По определению они часто используются в релейном режиме – простыми словами работают на «включение» и «отключение», кстати такие реле называются полупроводниковыми.

Отличия от электромеханического следующие — быстродействие на порядки выше, нет контактов, в связи с чем большая долговечность. Главное условие долгой эксплуатации – обеспечить номинальный тепловой режим и нагрузку.

Калибровка и настройка

После подключения геймпада к компьютеру нужно провести настройку и калибровку:

  1. Для калибровки джойстика требуется перейти в «Панель управления», а затем в «Оборудование и звук».
  2. В «устройствах» оборудования, если геймпад подключен правильно, будет обозначен контроллер – по нему нужно нажать правой кнопкой мыши и нажать «Параметры игровых устройств» — «Свойства».
  3. Во вкладке «проверка» можно проверить и оценить текущую калибровку.

Блок питания на TinySwitch

Для зарядника для шуруповерта потребовался блок питания 20-21В с выходным током 0.4А, причем в корпусе родного (дабы в родной кейс лез без проблем). Что ж, требованиям опять-таки больше всего удовлетворяет импульсник, так что вперед!

Один из экспериментов

После изрядного количества экспериментов, в которых питальники грелись, пускали Хоттабыча либо не выдавали нужной мощности пришлось-таки почитать Семенова �� В результате определилась топология (флайбэк) и основа — микросхема из серии TinySwitch II фирмы Power Integrations (PI). Фирма специализируется на разработке и выпуске микросхем для всевозможных источников питания и делает весьма интересные вещички. Серия TinySwitch же представляет собой линию контроллеров сетевого источника питания по топологии флайбэк со встроенным высоковольтным MOSFET ключом.

Внимание!

Большая часть схемы находится под опасным для жизни напряжением!

Запрещается:
  • Лезть во включенное в сеть устройство руками, паяльником и прочими предметами.
  • Лезть в устройство ранее, чем через 5 минут после отключения от сети.
  • Пользоваться устройством без надежного изолирующего корпуса.
  • Питать от него устройства, не имеющие двойной изоляции, без использования УЗО.
Топология флайбэк

Флайбэк, или обратноходовый преобразователь — одна из топологий однотактных импульсных преобразователей, в которой фазы накопления и отдачи энергии трансформатором разделены во времени (энергия отдается трансформатором в нагрузку во время обратного хода, отсюда и название Fly Back).

Работает схема довольно просто.

В первой фазе — накопления энергии — транзистор открывается и в трансформаторе, как в дросселе, накапливается энергия (точнее, он дроссель и есть, но я буду называть его трансформатором). При этом ток линейно растет (ну, по крайней мере если сердечник не насытится, но это уже не рабочий режим, поэтому допускать его не следует), напряжение с вторичной обмотки приложено к диоду VD1 в обратном направлении и поэтому ток в выходной цепи поддерживается только конденсатором Cout. Приложенное к VD1 напряжение, кстати, равно Uout + W2 * Uin / W1, что следует учитывать при выборе диода.

Во второй фазе — передачи энергии — транзистор закрывается, ток через первичную обмотку прекращается и напряжение на W2 меняет полярность. Диод открывается и трансформатор сбрасывает накопленную энергию в нагрузку. Вообще, по принципу работы флайбэк больше похож на step-up, чем на все остальные трансформаторные преобразователи (мост, полумост, прямоход, пуш-пул). Кроме того, так же, как и step-up, флайбэк может выдать на выходе напряжение, ограниченное только утечками, при отсутствии нагрузки. Именно поэтому неуправляемых флайбэков не бывает вообще, даже дешевые китайские зарядки на одном транзисторе имеют целых два кольца ОС. Выходное напряжение в фазе передачи трансформируется в первичную обмотку и прикладывается к транзистору, суммируясь с индуктивным выбросом от индуктивности рассеяния (это та часть накопленной энергии, которая не может быть сброшена через вторичную обмотку, т.к. накоплена в не связанном с ней магнитном поле), что приводит к необходимости включения специальной цепи ограничения напряжения на VT1, причем эта цепь должна стравливать только выброс от индуктивности рассеяния, но не трансформированное напряжение вторичной обмотки. Последнее, как правило, выбирается в районе 200В, так что на транзисторе при штатной работе напряжение 500-550В.

  • Принципиально ограниченная передаваемая мощность — поэтому режим КЗ большинству флайбэков не вреден. Кроме того, из-за этого свойства несложный флайбэк может использоваться как источник тока для зарядки NiCd/NiMH аккумов или питания мощных СИДов даже без обратной связи из вторичной цепи.
  • Простота схемы — при малых мощностях (до 50-200 Вт) флайбэки оказываются самыми дешевыми схемами. Да и заставить их работать тоже несложно.
  • Трансформатор работает в режиме дросселя — потому его габариты больше, чем в схемах с нормальным трансформатором. Кроме того, с повышением мощности режим ключевого транзистора становится все тяжелее. Поэтому на большие мощности флайбэки не делают — они становятся слишком большими и дорогими.
  • Трансформатор работает в режиме однополярных токов и потому требует введения зазора или сердечника из специального материала (микропорошковые и подобные, обычно кольца). Это не очень удобно для радиолюбителей, тем более что зазор нужно выдерживать достаточно точно, а его величина редко превышает доли миллиметра.
Описание микросхемы

В качестве основы блока выбрана микросхема TNY266PN. Она относится к серии TinySwitch II и выбрана по принципу «чтобы поддерживалась PI Expert 7, была в магазине и обеспечивала достаточную мощность». Первый пункт отметает все TinySwitch I (сцуко PI пиарит новые серии методом выпиливания поддержки старых из PI Expert, а найти старые версии оказалось не столь просто), второй отметает TNY265, которая вообще-то по третьему пункту проходила. Микросхемы в серии TinySwitch II отличаются только предельной мощностью нагрузки — она определяется токоограничителем внутри микросхемы.

Выпускается микросхема в нескольких корпусах, в том числе в SOP7 и DIP7 (это SOP8/DIP8 соответсвенно с выпиленной ножкой за номером 7). Выводов у микры всего 4, однако один из них — S — выведен на целых четыре ножки. Через них и осуществляется отвод тепла, так что запаивать их следует в полигон без термоперехода. D выведен на 8-ю ножку, так что отсутствующая 7-я увеличивает зазор между ним и S. EN/UV — ОС и управление функцией UVLO (UnderVoltage LockOut). Последний, BP — для кондера, фильтрующего питание микросхемы, кроме того, через него можно подавать внешнее питание на микросхему, это позволяет снизить потребляемую при отсутствии нагрузки мощность в пять раз, до 50 мВт.

  • Почти все необходимое — внутри, включая высоковольтный (700В) ключ.
  • Всевозможные встроенные защиты, заметно усложняющие сжигание микросхемы экспериментами.
  • Отсутствие необходимости в обмотке питания МС.

В принципе, можно покурить даташит и посчитать схему самому. Но проще воспользоваться PI Expert’ом, тем более мои познания на тот момент были недостаточны для ручного расчета.

Расчет схемы в PI Expert

Прежде всего определимся с трансформатором. Дело в том, что его обычно приходится откуда-то выдергивать, а не покупать тот, что программа посчитает нужным. Я выбрал сердечник EE19, на котором был намотан дроссель в ЭПРА от КЛЛ на ватт 20 чтоли.

Далее определимся с микросхемой. Можно покурить даташит и выбрать там подходящую по мощности МС, можно запустить встроенный в программу Product Selector Guide. Первый путь (в сочетании с прайсом Промэлектроники) определил выбор как TNY266PN. Так что тыкаем New и начинаем отвечать на вопросы визарда.

Прежде всего выберем семейство микросхем TinySwitch-II:

На второй страничке в общем-то ничего интересного — там предлагается выбрать параметры входного напряжения. К нашим реалиям больше всего подходит «AC Defaults -> Single 230V».

А вот на следущей страничке нужно указать параметры выходных напряжений и режим стабилизации — CV (стабилизация напряжения) или CV/CC (стабилизация напряжения с ограничением тока, для зарядников).

На следущей страничке — параметры проекта. Здесь надо поставить галочки SI-Units (чтобы оно выдавало результаты в системе СИ, а не всяких там дюймах) и Show Settings for New Design (здесь можно уточнить задание для программы). При желании можно отметить Use Shield Windings, это уменьшит помехи, но усложнит конструкцию трансформатора.

Появится окошко настроек оптимизации. Здесь можно настроить некоторые фильтры, ограничивающие выбор вариантов, которые проверит программа в поисках наиболее оптимального. Основное — лишить ее выбора в плане сердечника. Еще можно указать пределы по количеству витков в основной выходной обмотке.

После этого программа немного подумает и выдаст табличку наиболее удачных результатов. Выбираем какой понравится и жмем ОК.

Вот теперь мы возвращаемся в основное окно программы и видим нечто вроде этого.

Однако, микросхему программа выбрала не ту, да и некоторые другие детали тоже не устраивают. Так что прежде всего идем в PI Device -> PI Device Selection и меняем на TNY266. Теперь нужно повторить оптимизацию проекта. Для этого жмем Start Optimization на тулбаре или в меню Active Design. В результате транс поменялся на 83/17 витков. Это уже чуть проще намотать.

После этого можно последовательно пройтись по пунктам в дереве слева и поменять некоторые значения.

В разделе Specifications и Design врядли придется что-то менять, там данные, скормленные мастеру. Разве что Stacking — оно определяет, будут ли использоваться обмотки с отводами (Stacking) или независимые (Floating).

В Input Stage можно поменять детальки на те, что есть. Например, отказаться от двухступенчатого фильтра и поставить конденсатор на 10 мкФ, вместо предложенного на 6.8, потому как есть в загашнике.

Два раздела после PI Device позволяют поиграться с ручной оптимизацией трансформатора. Пока пропустим.

Output Stage чуть интересней. Тут выбран диод MUR115 — обычный кремниевый диод. А хотелось бы шоттки. Если потыкаться с выбором диода, то выяснится, что нужен он аж на 100В. Изначально там такого не было, но изучение прайса Промэлектроники выдало диод 11DQ10 (1.1A, 100V). Добавляем его в библиотеку (об этом чуть позже) и указываем программе. Теперь сообщает, что Design Passed (т.е. не содержит ошибок), но появилось замечание о малом запасе по напряжению диода.

Далее. Мне так и не удалось заставить PI Expert сгенерировать те же результаты, что и в прошлый раз, когда я собственно источник и расчитывал. Поэтому схема отличается от посчитанного. К тому же, там PI Expert не имеет претензий к выбранному диоду, а транс имеет 85/13 витков.

Теперь, имея результаты расчета, можно погулять по вкладкам, посмотреть расчитанные значения и нарисовать полную схему.

Окончательная схема
  • Появился предохранитель. Абсолютно необходимая вещь для всех сетевых источников.
  • Резистор UVLO разделен на 2. Это сделано из соображений снижения напряжения на нем.
  • Добавился конденсатор C3. Точно не знаю, зачем он нужен, но вроде уменьшает помехи и препятствует возникновению большого напряжения между обмотками, которое может пробить трансформатор. Должен быть класса Y1. Не знаю, правда, какие это параметры, поэтому заменил обычной высоковольтной керамикой на 3 кВ.
Трансформатор

Изготовление трансформатора — одна из самых важных частей работы. От этого зависит безопасность блока и будет ли он вообще работать.

Итак, прежде всего безопасность. Поскольку намотать с предлагаемыми PI Expert’ом отступами возможности нет — вторичку следует мотать если и не рекомендуемым TIW (Triple Insulated Wire — провод в тройной изоляции, двухслойная лаковая плюс ПВХ), то хотя бы просто изолированным проводом, между обмотками проложить изоляцию (2-3 слоя толстой ленты ФУМ), озаботиться изоляцией выводов первички от витков вторички. Нелишне пропитать обмотки лаком — это не только обеспечит дополнительную изоляцию, но и будет препятствовать писку трансформатора (частота включения/выключения генерации, за счет чего стабилизируется выходное напряжение, часто оказывается в слышимом диапазоне). Снаружи вторичную обмотку тоже следует обмотать ФУМ или изолентой.

Следущий вопрос — зазор. Его нужно выдерживать с достаточной точностью. Можно, конечно, взять микрометр и попытаться подобрать прокладку толщиной 0.127/2 мм (0.063 мм, ага), но это довольно сложно. Лучше подбирать зазор контролируя индуктивность первички L-метром. Можно подбирать прокладку, можно немного сточить центральный керн одной из половинок на мелкой наждачке. Я делал по второму варианту. Он, правда, необратим, так что если БП внезапно станет не нужен и отправится в разборку — убрать зазор из сердечника уже будет нельзя.

После подгона зазора сердечник склеивается (лучше суперклеем, он хорошо выгорает при температуре жала паяльника, что облегчает разборку трансформатора, если что), обматывается изолентой и заливается лаком, чтоб не болтался.

Настройка

Не требуется. Разве что подобрать стабилитрон для получения нужного напряжения на выходе.

Печатка

Не дам. Она сильно неоптимальная и вообще выполнена в ворде(!) и нарисована маркером. А вот вопросам трассировки в даташите уделен целый раздел.

  • Одноточечная земля (или как ее там). Дорожки от конденсатора ВВ выпрямителя (C2) и конденсатора на пине BP (C4) должны соединяться только в одной точке — на пине Source микросхемы.
  • Теплоотвод. Ножки Source выполняют роль теплоотвода, поэтому должны паяться к полигону максимально возможной площади. То же относится и к полигонам, к которым паяются выводы (оба) выходных диодов (VD4).
  • Петли импульсных токов. Для минимизации излучения помех следует минимизировать площадь, охватываемую петлями, образованными цепями C2-T1.W1-U1.D/S и W2-VD4-C5/6.
  • Ограничитель выбросов. Цепочку VD2-VD3 следует подключать к трансформатору и микросхеме максимально короткими дорожками.
  • Пин EN/UV. Следует располагать резистор R2 максимально близко к нему. Также, не следует забывать о напряжении на резисторах. Так, резисторы мощностью 0.25Вт расчитаны на напряжение до 200В. Именно поэтому их два, соединенных последовательно.
  • Y-конденсатор. Его (C3) следует подключать короткими дорожками прямо к соответсвующим выводам трансформатора.
  • Оптопара. Дорожку от оптопары до пина EN/UV следует делать предельно короткой (не более 12.7мм) и не ближе, чем 5.1мм к пину Drain (и соединенным с ним дорожкам).
  • Входной и выходной конденсаторы. Они должны быть разведены так, чтобы у тока не было обходных путей вокруг их пинов. То есть, линия должна проходить от выпрямителя через пин конденсатора (сужаясь при этом до ширины пятака) и затем идти на нагрузку. Пайка конденсаторов С2 и С5/6 к полигону нежелательна, а на аппендиксах — и подавно. Кроме того, минусовую ножку С5/6 следует подключать максимально короткой дорожкой прямо к ножке трансформатора, но не к линии Y-конденсатора.
Девайс в сборе

Россыпь деталюшек. Оптопара SMD. Это я зря. У нее пины расположены с точностью до наоборот по сравнению с тем, как надо. В результате — две перемычки. Расположена она как раз между ними.

Как проверить джойстик на пк без игры

Существует несколько способов, позволяющих проверить микросхему на работоспособность.

Внешний осмотр

Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.

Проверка работоспособности с помощью мультиметра

Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.

Проверка работоспособности микросхемы с помощью мультиметра

Выявление нарушений в работе выходов

Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.

Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.

Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.

Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.

Три варианта действий

Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:

  1. внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
  2. проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
  3. проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.

Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.

Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.

Влияние разновидности микросхем на способы проверки

Способ и сложность проверочных работ во многом зависит от типа схемы:

    Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе. На основании этих измерений делается вывод об исправности системы.

Микросхемы с тремя выводами

При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.

Причины неисправности

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

снимаем заряд с конденсатора

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

проверка конденсатора мультиметром

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

конденсатор показывает сопротивление

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

проверка пускового конденсатора

 

На дисплее прибора наблюдаем как начинает изменятся сопротивление:

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

разъем CX мультиметра

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

проверка емкости С104K

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

полярность конденсатора

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

проверка емкости конденсатора

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

емкость соответствует номинальной

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

как проверить емкость конденсатора мультиметром

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе. Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме. Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера. Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
      аналоговый покажет бесконечность, стрелка не двинется;
  2. цифровой или никак не отреагирует или высветит несколько МОм.
  3. При прозвонке анод-управляющий электрод:
      аналоговый покажет от нескольких до десятков кОм;
  4. цифровой выдаст такие же цифры.
  5. При прозвонке катод-управляющий электрод:
      то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи. Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Проведение проверки варистора мультиметром

Для проведения этой уникальнейшей операции, нам необходимы следующие приспособления:

  • Первым делом, конечно же отвертка (обычно требуется фигурная). Чтобы пробраться до платы, необходимо вскрыть корпус устройства, а тут как известно без неё не обойтись.
  • Требуется запастись будет еще и щёткой. Она нужна будет, чтобы очистить плату от накопившейся пыли. Из практики уже известно, что в блоках питания всегда ее скапливается очень много, особенно если устройство оснащено собственным охлаждением (вентилятором), характерный пример, – блок питания компьютера.
  • Важная вещь в подобной процедуре — паяльник. Без него никак. Нужно отпаять и обратно припаять варистор. Как правило внутри силовых блоков большие дорожки на платах и совершенно нет мелких деталей, поэтому можете смело пользоваться паяльником до 75 Вт.
  • Канифоль и припой (наверное, наиболее необходимое. Припаять обратно деталь без них не получится).
  • Мультиметр (электронный или аналоговый), чтобы иметь возможность замерить сопротивление.

Как только весь инструментарий будет готов, можно приступать к операции. Главное придерживайтесь схемы и все получится как нужно:

  1. Вскрываем устройство. Детально рассказать, как это сделать сложновато, ведь конструкции разных приборов разнятся между собой. В любом случае, всю эту техническую информацию Вы можете найти в паспорте устройства, в интернете (на различных тематических форумах и сайтах).
  2. Как только доберётесь до печатной платы, постарайтесь очистить её от пыли. Работайте как можно более аккуратно, чтобы не нанести вред радиодеталям. Отмечены случаи, когда излишнее усердие наносило больше вреда, чем пользы, так как щетина на щетке царапала тот или иной компонент схемы.
  3. Когда с пылью будет покончено, найдите варистор. Его отличает настолько специфический вид, что перепутать его невозможно.
  4. Найдя на плате варистор, прежде всего тщательно осмотрите его. Если видны трещинки, какие-либо сколы, либо другие механические повреждения корпуса, то это уже говорит о неисправности.
  5. Если были обнаружена какие-либо нарушения целостности корпуса, то выпаиваем повреждённый элемент, а вместо него ставим точно такой же или аналогичный. Найти замену Вы можете самостоятельно, ориентируясь на указанную на варисторе информацию, либо обратитесь к специалисту.
  6. Если при тщательном зрительном осмотре видимых повреждений не обнаружено, то следует пустить в ход мультиметр, конечно предварительно будет необходимо выпаять деталь с платы. Цепляем щупы мультиметра к нашей детали и выставляем режим замера максимального сопротивления.
  7. Щупы тестера прижимаем к ножкам варистора и замеряем сопротивление. В идеале мультиметр должен показать высокие значения до бесконечности. Если перед Вами другое значение, то это говорит о неисправности варистора и его необходимо заменить.
  8. Во время измерений, внимательно следите, чтобы не коснуться руками щупов мультиметра. Иначе он будет показывать сопротивление вашего тела. Если есть необходимость заменяем варистор и собираем корпус устройства обратно.

Измерение сопротивления и проверка варистора, может быть осуществлена двумя способами.

Вариант 1

Первоначально проводим визуальный осмотр. Для этого отключаем аппарат от питания, вскрываем корпус и определяем где находится предохранитель. Далее извлекаем его и проверяем. Если предохранитель перегорел или негоден, то он заменяется. И только когда мы проверили предохранитель и заменили, переходим к нахождению и тестированию варистора. Его сложно не заметить, так как он выкрашен обычно в красные, синие или жёлтые цвета. Это маленький дискообразный элемент. Обычно крепится на предохраняющем держателе.

Далее отсоединяем любой из проводов, для этого нагреваем его паяльником и извлекаем варистор с платы при помощи плоскогубцев.

Сама проверка основана на замере показателя сопротивления: включаем тестер, переводим его в позицию замера сопротивления; фиксируем жала щупов на выводах варистора. Далее проводится замер.

Вариант 2

Другой способ берет за основу данные из инструкции или спецификации устройства для определения показателей нормальной работы варистора. За символом «CH», которым обозначается нелинейное сопротивление, указано значение, которое производитель заложил в конструкцию или которые свойственны тому материалу, из которого изготовлен варистор. Значения, сопровождаемые маркировкой «B±…%», показывают уровень предельного сопротивления и допуск.

Если для элемента не предоставлена спецификация, наиболее подходящим будет именно первый вариант.

Ремонт блока питания стиральной машины своими руками

Подробно: ремонт блока питания стиральной машины своими руками от настоящего мастера для сайта olenord.com.

Блок питания обеспечивает подачу напряжения в 5 вольт процессору. Его трансформатор расположен за входной колодкой. Для ремонта его достаточно легко достать.

С 2009 года машины LG и Samsung начали производиться с участием корпорации Flextronics. В блоках питания стиральных машин LG и Самсунг используется понижающий трансформатор с первичной обмоткой 230 вольт и вторичной – 12 вольт.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-2

Принцип получения 5 вольт у машин Самсунг и LG:

  • вторая обмотка снимает 12 вольт AC;
  • 12 вольт DC снимаются с выпрямителя, образованного диодным мостом;
  • вторичная обмотка заземлена с двух сторон с помощью двух резисторов 33 к;
  • в конце диодного моста расположен диод, он не участвует в процессе преобразования напряжения;
  • в RC-цепи стоит конденсатор 2,2 мФ, фильтр этой цепи снижает пульсации;
  • 12 вольт преобразуются в 5 через стабилизатор L7805;
  • завершает цепочку фильтр с электролитическим конденсатором 470 мкФ.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-1

Выходящие 5 вольт обеспечивают работу стиральной машины Самсунг и LG.

Блок питания, к сожалению, требует ремонта или замены чаще, чем того хотелось бы. Его необходимо проверить первым, если стиральная машина Самсунг или LG отказывается включаться. Тестируем:

Используют импульсные блоки питания. Они имеют меньший размер по сравнению с блоками питания LG и Samsung. Несмотря на то, что производятся они, как правило, на базе Flextronics, схема у Ariston и Indesit принципиально отличается.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-3

Импульсный источник питания электронных модулей стиральных машин

У машины Индезит/Аристон в начале цепи такого блока находится варистор. Далее напряжение проходит через конденсаторы, резисторы, выпрямитель. После выпрямления оно нарезается импульсами.

Визуально неисправность будет находиться на плате или внутри микросборки. Это могут быть транзисторы, симисторы или тиристоры. Ремонт может также потребоваться защите от коллизий.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-11

Изучение микросхемы TNY 264 PN, главной детали импульсного блока у Индезит/Аристон, потребует значительного времени. Суть ее работы заключается в следующем:

  • первая обмотка заземлена через микросхему;
  • импульсы генерируются встроенным импульсным источником питания 5,8 вольт;
  • вторичные обмотки у трансформатора 12 и 5 вольт DC;
  • вывод BP обеспечивает бесперебойное питание встроенному импульсному источнику;
  • вывод EN/UV разрешает вход и отслеживает нестабильность;
  • S – для заземления внутренних полупроводников;
  • HV RTN замыкает напряжение по первой обмотке.

Такая микросхема защищена от перегрузки, самостоятельно подает импульсы трансформатору и тестирует выходы.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-5

В случае неисправности имульсного блока питания машины Индезит/Аристон потребуется тщательное изучение всех участков микросхем. Целесообразно найти их описания. Схемы блоков питания стиральных машин, как правило, доступны на сайтах производителей или их сервисной технической поддержки, в нашем случае Ariston и Indesit. Зачастую схемы отдельных моделей можно найти по производителю Flextronics.

Видео (кликните для воспроизведения).

Перед демонтажем отдельных деталей стиральной машины полезным будет сделать фото крупным планом, чтобы впоследствии не возникло вопросов, откуда взялись те или иные части, и куда что вставлять.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fwww.1stiralnaya.ru%2Fwp-content%2Fuploads%2F2017%2F12%2Fprincip-raboty-bloka-pitaniya-51

Внешне блок питания можно определить по подведенному питанию и трансформатору (или двум). Он отсоединяется. При работе с электроникой стиральной машины по возможности используйте антистатические аксессуары и одежду (перчатки, напульсники, сапоги).

Стиральная машина не включается — нет питания. Вопрос – почему? Давайте сегодня глубже обсудим устройство стиральной машины. Читатели успели проверить розетку, целостность шнура, подачу воды, погадать на кофейной гуще. Проведем люд через электронные дебри стиральных машин. Поговорим, почему стиральная машина не включается. Заканчивайте проверять предохранители (опционально), в путь!

Если не включается стиральная машина, первое подозрение заслужил блок питания. Обязан обеспечить подачу напряжения (+5 вольт) процессору, зажигающему огоньки индикации. Действительно, импульсного блока питания в стиральной машине может не быть. Электроники здесь мало, ток потребления невысок, трансформатор получается скромных размеров. Попробовали бы сделать для телевизора! Трансформатор понижающий:

  • Первичная обмотка 230 вольт переменного тока 50 Гц.
  • Вторичная обмотка 12 вольт переменного тока 50 Гц.

Причем 220 вольт, 12 вольт — действующие значения. Где искать трансформатор? После шнура питания, колодки входной, которые, мы договорились, проверены. Двигатель питается через сетевой фильтр. Устройство защищает не коллекторный мотор, наоборот – уберегает соседей: видеомагнитофоны, плееры дисков, домашние кинотеатры, блоки электроники аппарата. Исправность фильтра легко проверить, измерив выходное напряжение. Должно быть 220 вольт. Как найти фильтр? Коробочка, идущая вослед колодке, корпус обрисовывает принципиальную схему, составленную индуктивностями, конденсаторами, резисторами.

Деталь разбирали подробно силами портала. Схема нарисована, копируйте на здоровье, никому не говорите и избегайте попадания воды. Элементы имеют пробивное напряжение, составляющее сотни вольт. Учтите, подбирая элементную базу. Электронный блок стиральной машины требует питания.

Samsung использует 5 вольт, получаются типичным образом:

  1. Со вторичной обмотки понижающего трансформатора снимается 12 вольт переменного напряжения.
  2. Диодный мост образует двухполупериодный выпрямитель, с которого снимаются постоянные 12 вольт.
  3. По технике безопасности положено заземлять вторичные обмотки трансформаторов, сделано через два резистора по 33 к – по одному на каждый край (не спрашивайте, как это работает).
  4. На выходе диодного моста очередной диод, полагаем, здесь находится по причине удержания большего пробивного напряжения. С точки зрения преобразования сигнала элемент роли не играет.
  5. Параллельный фильтр из RC-цепочки сглаживает пульсации. Здесь стоит электролитический конденсатор 2200 мкФ.
  6. Всем знакомый стабилизатор напряжения 7805 преобразует 12 вольт в 5 вольт.
  7. Выход украсил очередной RC-фильтр, емкость электролитического конденсатора составляет 470 мкФ.

Напряжение 5 вольт подается питать электронный мозг стиральной машины. Проверка блока питания происходит следующим образом:

  1. Следует проверить напряжение выхода вторичной обмотки трансформатора. Составляет в нормальных условиях 12 вольт (действующее значение). Если это не так, трансформатор сломан.
  2. На входе стабилизатора 12 вольт постоянного тока. Иначе проверяйте диодный мост (если значение вдвое меньше), конденсатор емкостью 2200 мкФ.

Кабель питания стиральной машины Аристон

Говорят, импульсных источников питания в стиральной машине нет. Неправда. Ariston/Indesit может похвастаться целой плеядой изделий. Микросхема TNY 264 PN эксплуатируется итальянцами. Глобальный ключ в виде микросборки, вдобавок сравнивает выходные напряжения с номиналами. Принцип работы прост: при появлении питания генератор импульсов нарезает выпрямленное напряжение сети 230 вольт.

Что такое импульсный источник питания? Отличается от рассмотренного выше размером трансформатора. Что в случае со стиральными машинами не столько помогает снизить вес, сколько экономит материалы производителю, уменьшает занимаемый объем. Главные неисправности импульсных блоков питания ограничены неисправностью составных частей.

На входе стоит защитный варистор. Проверяйте целостность. Затем гармоники входного напряжения фильтруются при помощи конденсаторов, индуктивностей, резисторов. Выпрямитель двухполупериодный, либо однополупериодный (настолько низок ток потребления). Один варистор защищает вход микросхемы против скачков напряжения, закорачивая на землю. Выпрямленное напряжение нарезается импульсами. Открывается наибольший простор техническим решениям. Понять, что сломалось, поможет тщательное изучение схемы. Ключом послужат транзисторы, тиристоры, симисторы. Территориально может располагаться на плате, либо входить в состав микросборки.

Чтобы понять, почему стиральная машина не включается, придется изучать документацию. TNY 264 PN имеет защиту против коллизий (однако боится воды), стоит порядка 60 рублей. Лучше, нежели брать новую стиральную машину.

Микросхема. Документация выложена в свободном доступе. Сборка снабжена встроенным источником питания 5,8 вольт, генератор импульсов частотой 132 кГц. Питание берется с входа Drain (D). Поясним. Первичная обмотка заземляется через микросхему, процессом управляет внутренний генератор импульсов, сразу получается нарезка. С этого потенциала берется питание внутренних 5,8 вольт. Схемы импульсных источников стиральных машин Indesit малопонятные. Избегаем приводить документацию, покажем типичный пример включения микросхемы из фирменного проспекта на изделие.

Примерно в этом режиме сборка используется в стиральных машинах. Вторичных обмоток трансформатора две: 5 и 12 вольт постоянного напряжения. Приведем назначение выводов микросхемы:

  1. Bypass (BP) предназначен для заземления через конденсатор емкостью 0,1 мкФ. Позволяет работать внутреннему источнику питания 5,8 вольт.
  2. Enable/under-Voltage (EN/UV). У контакта двойственная функция. Во-первых, это разрешение рабочего режима, а во-вторых, датчик по минимальному напряжению. Если к линии постоянного тока через резистор подходит обратная связь, выполняется коррекция режима в нужную сторону. При отсутствии резистора микросхема умеет определять ситуацию, не выполняет контроль за режимом.

Ремонт стиральной машинки

Получается, силовой ключ на МОП транзисторе помещен в одном корпусе с генератором импульсов. Схема отличается от типичных блоков питания. Внутри защита против перегрузки по максимальному току, также выключение при перегреве. Получается самодостаточная конструкция. Вырабатывает импульсы для трансформатора, попутно контролирует выходные напряжения.

Территориально блок питания стиральной машины расположен на электронной плате прибора. Определить можно по наличию одного-двух трансформаторов. Как было показано выше, силовой ключ иногда интегрирован с генератором импульсов, внутри иногда защита. Поэтому для структурного деления платы полезно найти описания ко всем имеющим отношение к делу микросхемам.

Временами блок питания представлен отдельной миниатюрной пластинкой текстолита, на манер карты расширения материнской платы персонального компьютера воткнутой в слот перпендикулярно электронному мозгу стиральной машины. Но главное именно в это место должна приходить шина питания. 230 вольт могут следовать на различные реле (иногда расположенные поблизости), питающие дренажную помпу, впускной клапан. По мере надобности программатор (бортовой компьютер, блок электроники – называйте, как хотите) подает сигнал, задействовать выбранное оборудование.

Электронный мозг стиральной машины связан с прочими компонентами через разъемы. Поэтому модуль ничего не стоит отстыковать. Будьте осторожны в процессе. Расстыковку ведите при выключенном питании, избегая статического разряда. Если можно, не одевайте резиновую обувь, свитера, пользуйтесь специальными антистатическими напульсниками. Стоит копейки (200 рублей), пригодится при ремонте электронной аппаратуры, зато поможет сохранить в целостности самый дорогой компонент стиральной машины.

Видите, все просто, как дважды два. Откровенно надеемся, теперь читатели знают, как починить стиральную машину. Кстати, не слишком доверяйте схемам из сети различных отечественных умельцев, пользуйтесь для справки официальной документацией, наподобие представленной рисунком в начале статьи.

Как это обычно и бывает, работает работает дома техника, лет эдак 9, а потом неожиданно тихо умирает. Вот и нас это не обошло. Перестала включаться стиральная машина.
Мастера звать не стали, так как был уже печальный опыт, да и у самого руки вроде как из плеч растут.

Полез в машинку. Отвинтил сзади два самореза от крышки, снял её, разобрал переднюю панель, добрался до управляющей платы, и платы блока питания.

Блок питания DC41-00060A в сборе с платой управления

На плате блока питания сразу увидел вздувшийся конденсатор, ну в принципе причина неисправности стала понятна. Емкость высохла и вместо постоянного напряжения мы получаем пульсирующее, такой режим работы мало кому понравится.

Осталось выяснить какие ещё компоненты конденсатор за собой потащил.

Видно вздувшийся конденсатор 10мкФ 450В

Тут видно, что всё очень сильно грелось

Порыскав по интернету, нашёл похожий случай на мой. Не много скриншотов.
Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=https%3A%2F%2F4ham.ru%2Fwp-content%2Fuploads%2F2018%2F06%2FDZX_003-007-600x337

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=https%3A%2F%2F4ham.ru%2Fwp-content%2Fuploads%2F2018%2F06%2FDZX_003-008-600x337
Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=https%3A%2F%2F4ham.ru%2Fwp-content%2Fuploads%2F2018%2F06%2FDZX_003-009-600x337Ну и где-то там же нашёл часть схемы блока питания

Узел блока питания DC41-00060A от Samsung WF722S8R

И начал я пилить и кромсать

Разметил площадь вскрытия

Канцелярским ножом прорезал пластмассу

Получил доступ к выводам компонентов

Здесь я начал убирать герметик с верхней стороны платы

Очищаю участок платы от герметика

Убрал герметик с верхней стороны платы, получил доступ к компонентам

При прозвонке компонентов, выяснилось, что ШИМ-контроллер TNY266PN тоже вышел из строя, его тоже выпаял

Вернул всё на место, включил, и всё заработало

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=https%3A%2F%2F4ham.ru%2Fwp-content%2Fuploads%2F2018%2F06%2FDZX_003-021-600x337

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=https%3A%2F%2F4ham.ru%2Fwp-content%2Fuploads%2F2018%2F06%2FDZX_003-022-600x337

Спасибо Евгению за косультации и поддержку .

Все современные стиральные машины оснащены модулем управления. Чем больше функционал у СМ, тем нежнее электроника: она более подвержена поломкам, поскольку чувствительна к скачкам напряжения в сети. Возможен ли ремонт «мозгов» стиральных машин своими руками, как диагностировать их поломку, мы выясним в данной статье.

Главный блок управления стиральной машины оснащен двумя платами. Одна из них отвечает за работу всех деталей стиралки. Другая обеспечивает работу панели управления – кнопок, индикаторов – и имеет соответствующие разъемы для подключения проводки.

Неужели плата никак не защищена от перегрузок? Конечно, производитель предусмотрел для таких случаев сетевой фильтр, который принимает на себя удар во время скачка напряжения в сети.

Как проверить плату стиральной машины и определить поломку?

Дело в том, что большинство признаков могут указывать на поломку как модуля, так и других деталей. Например, вы заметили, что машина перестала работать, стирка не запускается. Виной тому может быть неполадка с модулем или мотором стиралки.

Что может указывать на неисправность и последующий ремонт платы в стиральной машине:

  • СМА выдаем код ошибки на дисплее.
  • Система «зависла», не отвечает на манипуляции пользователя.
  • Слишком долго стирает. Машина то набирает, то сливает воду, после чего система «зависает».
  • Барабан резко меняет направление движения без видимых на то причин.
  • Режим отжима не включается.
  • Вода перегревается или не нагревается, что не соответствует выбранному режиму.

Однако при последующем запуске стиралка может снова работать в привычном режиме.

В некоторых моделях СМА есть автотест, который позволяет определить причину поломки. Как его запустить, написано в инструкции по эксплуатации машины.

  1. Короткое замыкание в результате перепада напряжения, может привести к перегоранию конденсаторов, тиристоров, триггеров и других элементов на плате.
  2. Повышенная влажность. Если СМ эксплуатируется в ванной комнате, со временем влажность воздействует на главный блок, что приводит к его неисправности.
  3. Нарушение провода питания. Если резко оборвать провод, может произойти скачок напряжения, что повлияет на работу модуля.
  4. Частое резкое выключение машины из сети со временем может привести к неполадке.
  5. Реже встречается заводской брак.

Будьте внимательны при перевозке СМ с места на место. Обязательно вытаскивайте дозатор для порошка, поскольку в нем остается немного воды. При транспортировке вода попадает на главный блок, что приводит к его сгоранию при подключении.

Чтобы начать ремонт, вам понадобится схема платы управления стиральной машины, как показано на примере стиралки Индезит.

Мы можем посоветовать вам поверхностно осмотреть модуль, чтобы найти прогары и повреждения. Есть и другие способы проверки, но проводить их может лишь опытный специалист. При выявлении неисправностей придется заменить «мозги» для стиральной машины.

Чтобы провести визуальный осмотр, разберемся, как снять плату стиральной машины. Сначала отключите стиралку от сети, затем поступите так:

  • Вытащите лоток-дозатор для моющих средств. Для этого потяните его на себя, одновременно нажимая защелку в центре.
  • Теперь открутите все винты, удерживающие панель управления.
  • С помощью отвертки разожмите пластиковые защелки. Снимите панель с корпуса.
  • За панелью расположен главный блок. Сфотографируйте или пометьте маркером расположение проводов. Затем отсоедините их и достаньте блок.
  • Возможно, чтобы добраться до платы, понадобится разжать защелки блока.

Как только плата оказалась перед вами, тщательно осмотрите ее. Заметили подгоревшие участки? Тогда нужно выполнить ремонт блока управления стиральной машины.

Мы подскажем, как можно заменить некоторые элементы. Для этого вам понадобится паяльник и новая деталь.

  • Конденсатор. На плате управления он служит своеобразным стабилизатором. Для его замены вам нужно припаять новую деталь к положительному электроду. Чтобы узнать, где какой электрод находится, применяйте тестер.
  • Резистор. Чтобы проверить работу резистора, используется тестер. Резисторы 1-ого порядка должны показать результат, равный 8 Ом, и перегрузку 2А. Резисторы второго порядка показывают 3-5А, при этом показатели сопротивления зависят от частотности модуля. Если показатели не соответствуют норме, производится замена элементов – методом пайки.
  • Тиристорный блок. Проверить тиристорный блок можно, измерив отрицательное сопротивление. Показатели должны быть не выше 20В. Также мог перегореть фильтр блока. Выполнить его ремонт можно, зачистив катод.
  • Триггер. Проверка триггера заключается в измерении напряжения входных контактов. Их показатели не должны превышать 12 В. Сопротивление фильтра триггера должно составлять 20 Ом. Замена элемента проводится также методом пайки.

Пайка компонентов платы может нарушаться в результате сильных вибраций машины. Поэтому нужно следить за правильной и стабильной установкой стиралки.

Как правильно отремонтировать плату управления, знает мастер. Подумайте, прежде чем начинать самостоятельный ремонт, ведь электронный блок стоит довольно дорого. Если у вас нет навыков работы с паяльником, а показатели проверки не дают конкретных результатов – обращайтесь в сервисный центр.

Для тех, кто все-таки решился на самостоятельный ремонт, видео по теме:

Современные стиралки надежны и функциональны. Производитель делает все, чтобы его изделие работало долгие годы без вмешательства. Однако модуль управления стиральной машины выходит из строя чаще, чем этого хотелось бы владельцам агрегата. Происходит это по целому ряду причин, некоторые из которых отдельно оговариваются производителем, и несоблюдение поставленных им условий ведет к прекращению гарантийных обязательств. Другие могут вызываться браком. Однако если срок гарантии истек, можно попытаться сделать самостоятельный ремонт платы управления стиральной машины либо провести детальную диагностику.

Модуль управления – это компьютеризированное «сердце» машинки. В зависимости от поступающих сигналов от датчиков и регуляторов, плата управления активирует тот или иной функционал. Она достаточно универсальна. Производитель ставит одну и ту же деталь на различные марки стиралок, маркируя их по-разному. К примеру, самые распространенные модели электронного модуля стиральной машины Indesit маркируются как W105TX, WISL82. В зависимости от поколения конкретной модели стиралки, может отличаться прошивка центрального процессора или количество входных и выходных сигналов.

  • осуществляет контроль температуры;
  • задает режим, в котором работает электродвигатель;
  • отсчитывает временные отрезки программ;
  • отвечает за запуск сливных насосов;
  • обеспечивает контроль входного давления воды и функционирования затвора подачи;
  • отвечает за работу блокировки.

Управляющий сигнал поступает через клеммники или соответствующие контакты комплексной шины. Определить, где именно пропал сигнал, можно. Для этого понадобится схема конкретного модуля управления. К большинству стиральных машинок такая информация прилагается в инструкции. Если таких данных нет, можно легко найти их в интернете по маркировке, которую имеет электронная плата.

Причин отказа управляющего контроллера может быть несколько. Перечислим основные, с указанием возможных вариантов несложного ремонта:

К другим причинам относится избыточный нагар, наличие токопроводящих испражнений домашних вредителей (тараканов, мышей), а также замыкания через тело насекомых или грызунов. Устранить такие неприятности, если системы защиты не допустили аварии, просто. Плату достаточно почистить.

Признаков, что плату управления пора почистить или отремонтировать, а также проверить состояние датчиков, может быть несколько:

  • Аппарат не включается, на дисплее высвечивается ошибка.
  • На некоторых моделях светодиоды панели мерцают, мигают или горят все одновременно.
  • Машинка отказывается стирать, набирать или сливать воду, делать отжим, нагревать, выполнять одну из операций, входящих в цикл стирки.
  • Не выполняется одна из программ.
  • Вода холодная или перегревается.
  • Индикаторы хаотично мигают.

Причины могут быть самые разнообразные, к примеру, неожиданные режимы работы двигателя – он или крутится на полных оборотах, или с натугой еле-еле проворачивается.

Некоторые современные модели имеют режим самотестирования, который позволяет определить, какой именно ремонт электронных модулей стиральных машин требуется.

Информация о том, как сделать автоматическую проверку, не указывается в документации. Однако ее можно найти в интернете на специализированных форумах. К примеру, некоторые модели Ардо тестируются так:

  • сливается вода и опустошается бак;
  • механический селектор программ поворачивается стрелкой вертикально вниз;
  • устанавливается нулевая температура.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Ftehnika.expert%2Fwp-content%2Fuploads%2F2017%2F04%2F%25D0%2591%25D0%25BB%25D0%25BE%25D0%25BA-%25D1%2583%25D0%25BF%25D1%2580%25D0%25B0%25D0%25B2%25D0%25BB%25D0%25B5%25D0%25BD%25D0%25B8%25D1%258F-%25D1%2581%25D1%2582%25D0%25B8%25D1%2580%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D0%25BE%25D0%25B9-%25D0%25BC%25D0%25B0%25D1%2588%25D0%25B8%25D0%25BD%25D1%258B-Vestel-600x433

После этого достаточно нажать все кнопки панели управления одновременно. Машинка перейдет в режим самодиагностики. После его прохождения на дисплее высветится ошибка, по которой легко определяется неисправность.

Устройство управления снимается достаточно просто. Нужно, в зависимости от модели, снять переднюю панель или добраться до места установки, демонтировав верхнюю часть машинки. После этого плата снимается.

В современных моделях предусмотрена защита «от дурака» – клеммы нельзя поставить в неправильное положение. Однако при демонтаже стоит внимательно смотреть, что куда подключено, чтобы установить отремонтированный модуль правильно. Лучше фотографировать процесс. Плата снимается после удаления фиксирующих планок, которые обычно крепятся саморезами или болтами с утопленными головками.

Ремонт электронного блока управления стиральной машины может потребовать специальных навыков. Придется тестировать параметры элементов, проверять целостность цепей.

Определить необходимость вмешательства специалиста достаточно просто. Признаки следующие:

  1. На плате есть места измененного цвета, подпалины, потемневшие дорожки.
  2. Шляпки конденсаторов явно выпуклые или порванные в месте крестовой насечки.
  3. На демпфирующих катушках присутствуют следы выгорания лакового покрытия.
  4. Место установки основного процессора потемнело, ножки микросхемы имеют неодинаковый окрас.

Если один из таких признаков найден, а навыков работы с паяльной станцией и мультиметром нет, то стоит вызывать квалифицированного специалиста.

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Ftehnika.expert%2Fwp-content%2Fuploads%2F2017%2F04%2F%25D0%25A1%25D1%2585%25D0%25B5%25D0%25BC%25D0%25B0-%25D0%25B1%25D0%25BB%25D0%25BE%25D0%25BA%25D0%25B0-%25D1%2583%25D0%25BF%25D1%2580%25D0%25B0%25D0%25B2%25D0%25BB%25D0%25B5%25D0%25BD%25D0%25B8%25D1%258F-%25D1%2581%25D1%2582%25D0%25B8%25D1%2580%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D0%25BE%25D0%25B9-%25D0%25BC%25D0%25B0%25D1%2588%25D0%25B8%25D0%25BD%25D1%258B-600x422

Схема блока управления стиральной машины

Но ряд неисправностей, которые вызывают сбои в работе модуля управления, можно ликвидировать самостоятельно. Они связаны с неполадками датчиков. К примеру:

  1. Сбой датчиков установки программы. Возникает из-за засаливания и засорения контактных групп в ручке регулировки. Признаки: регулятор вращается туго, не издает отчетливого щелчка. Необходимо разобрать ручку и почистить ее.
  2. Накопление нагара. Присутствует у старых стиральных машинок. Визуально легко идентифицируется: силовые катушки сетевого фильтра покрыты слоем сажи. Его тщательно сметают сухой тряпочкой и кисточкой.
  3. Сбой датчика замка люка. Также возникает из-за наслоения мыльных остатков, засаливания. Блок замка нужно почистить.
  4. Отказ запуска после кратковременного прокручивания мотора, нестабильные обороты. Может вызываться ослаблением ременной передачи. Машинку потребуется разобрать и подтянуть шкив.
  5. Наводки из электросети. Отсутствие заземления может приводить к «биению» напряжения, в результате чего модуль управления блокирует работу устройства. О том, как заземлить стиральную машину, читайте здесь.

Еще одна частая проблема, которая присутствует у машинок Индезит – нестабильные параметры давления воды. В то время как пользователь пытается решить проблему, проводя ремонт центрального модуля управления стиральной машины, дело только в пережатом шланге, лопнувшей прокладке или грязном фильтре.

Ремонт блока управления стиральной машины – задача, требующая вмешательства квалифицированного персонала.

Прежде, чем демонтировать плату, убедитесь, что все датчики реагируют верно. Стоит покрутить ручки установки режимов, проверить легкость и четкость защелкивания замка, убедиться в нормальном давлении и подаче воды.

Самостоятельный демонтаж платы управления стоит делать только тогда, когда срок гарантии истек. Если это произошло, и другие методы борьбы с неисправностями не помогают – модуль снимается, при отсутствии навыков починки электронной аппаратуры его можно заменить целиком.

Хотя они думали, что никогда не смогут. Ремонт стиральной машины своими руками не такой сложный процесс как Вам кажется!

Из практики мастеров он сводится в большинстве случаев к замене поврежденной запчасти.

  • Простые ФАКТЫ:

1.За последние 10 лет качество стиральных машин резко ухудшилось. Причем, высокая стоимость, не всегда гарант того, что куплен надежный и безотказный аппарат.

2.Комплектующие стали делать все кому не лень, и производитель не всегда ответственно относится к выбору поставщика. Режущий глаза ассортимент машинок – результат маркетинговых уловок. На деле – начинка у ряда марок одинаковая, и различаются они внешним видом, да разрекламированным брендом.

3.Производители усложненяют конструкцию, делая её все менее обслуживаемой и долговечной. К примеру – неразборный барабан. При выходе из строя подшипников владельцу нужно разрезать барабан. Или угольно-графитные щетки повально устанавливаемые вместо графитных. Последние ходят на порядок дольше, да и стоят не намного дороже. Чем продиктовано такое решение? Заботой о потребителе?

  • Самый сложный ремонт в машинке?

Для этого нужно иметь определенное образование и опыт. Сложно и долго – вот как такую работу можно охарактеризовать, и на дому её почти никто не делает.

Просто потому, что это долго и хлопотно. По сути, разбирается вся машинка.

  • Чем отличаются не оригинальные запчасти от оригинальных, кроме цены?

Качеством.Что значить «оригинальные»?

То, что деталь была изготовлена в строгом соответствии с технологией и прошла проверки качества на предприятии, которое имеет лицензию на производство этой самой детали.

  • Банальная неисправность – стиралка не греет:

Заглянем в иллюминатор люка и проверим есть ли вода в барабане.
Если ее нету, но с какого перепуга будет нагрев.
Двигаемся дальше, вода есть, но она холодная.При этом выставлен режим более 60 градусов на хлопке.

Часто виновником торжества является неправильно организованный слив воды. Казалось бы с какого хрена здесь это. Оказывается при низком уровне сливного шланга вода утекает из бака самотеком в канализацию.
Что делает СМ? Правильно – добирает бесконечно жидкость. Только при достижении необходимого уровня включается нагрев.Контроль за этим осуществляет датчик – прессостат.

Следующий этап – вскрываем стенку для замера напряжения на клеммах тэна.

Будьте осторожны – мощность около 2 КВт!

Наличие 220 вольт говорит нам о проблемах в кипятильнике или датчике температуры.Последний может впаиваться внутрь нагревателя или прилагаться отдельно.

Если нет напряга – что-то случилось с “мозгами” СМ.Отсоединив провода с разъема, идущие на тэн прозваниваем их тестером на обрыв. Если Вы не знакомы с радиоэлектроникой задаемся вопросом – может попросить помощи?

Шерстим форумы и задаем вопросы конкретно по своей модели СМ.
На, что здесь обратить внимание – симистор (реле) управления тэна. Почернение и выгорание подскажет нам о его обрыве.

Не будем углубляться в дебри и выходить за рамки темы – подведем итоги.

Затрачено энное количество времени.Поставлен диагноз и проверена вся цепочка устройств, участвующая в нагреве воды. При сбоях в датчике t, тэне придеться бежать в магазин.И вот исправная запчасть у Вас в руках и происходит замена.

Ура! СМ заработала.Был интересен процесс ремонта, пришлось повозиться, я же мужик.

Рассматриваемый источник питания (ИП) входит в состав электронных модулей стиральных машин фирм (СМ), выполненных на платформе EVO-II, ARISTON/INDESIT, а также других производителей. Подобные источники питания имеют несколько разновидностей:

– простейший вариант источника используется в модулях, управляющих коллекторными приводными моторами), он формирует напряжения 5 и 12 В. Расположение элементов ИП на этом модуле показано на рис. 1.;

– источник с интегральным стабилизатором напряжением 5 В типа 78L05 и элементами схемы питания датчика проводимости;

– в модулях, предназначенных для подключения 3фазных моторов, используется ИП, формирующий напряжения 12, 15, 3,3 и 5 В (два канала).

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fradioradar.net%2Ffiles%2FImage%2Frepair_electronic_technics%2Frepair_home_appliances%2Fariston_indesit_evo2%2Fpic1

Рис. 1. Расположение элементов ИП на плате электронного модуля EVO-II

Аппаратная платформа EVO-II предусматривает различные конструктивные реализации, в качестве примера на рис. 2 показан так называемый “липец

кий” модуль (устанавливаются в СМ, выпускаемые на предприятии Indesit Company в г Липецке), в котором ИП выполнен на отдельной плате (показана стрелкой).

Основой рассматриваемых ИП является ключевой регулятор напряжения TNY264 семейства TinySwitch-II фирмы Power Integrations со встроенным мощным полевым транзистором. Рассмотрим подробнее структуру данной микросхемы и ее возможности.

Структурная схема микросхемы TNY264 приведена на рис. 3.

Импульсные преобразователи семейства TinySwitch-II имеют в своем составе силовой МОП транзистор (DVDSS = 700 В), генератор, высоковольтный импульсный источник тока, схемы ограничения тока и температурной защиты. Питание для запуска и работы узлов в составе микросхемы поступает непосредственно с вывода DRAIN (D), что исключает необходимость в дополнительной обмотке смещения импульсного трансформатора в составе ИП и связанной с ней схемы. Все приборы указанного семейства содержат схемы автоматического перезапуска и контроля входного напряжения. Схема автоматического перезапуска ограничивает выходную

мощность ИП в различных аварийных ситуациях – при коротком замыкании на выходе источника питания, при обрыве цепи обратной связи, при перегреве микросхемы и т.д. Рабочая частота преобразователя микросхем составляет 132 кГц. Максимальная выходная мощность ИП на базе микросхем TinySwitch-II может составлять от 5 Вт (TNY263) до 16 Вт (TNY268) при питании от сети переменного тока 220. 230 В.

Микросхемы рассматриваемого семейства выпускаются в корпусах DIP-8B/G и SMD-8B.

Назначение выводов микросхем показано в таблице.

Существует единственный недостаток данных ИП именно в составе электронных модулей СМ – они часто выходят из строя из-за попадания на них влаги. Производители электронных модулей, к сожалению, не учли данный аспект. К счастью, электронные элементы данных ИП имеются в широкой продаже, поэтому ремонт на компонентном уровне источников питания не вызывает особых затруднений.

А теперь рассмотрим особенности одной из разновидностей схемы ИП на микросхеме TNY264, входящем в состав электронных модулей СМ, выполненных на аппаратной платформе EVO-II (в варианте модуля для коллекторных приводных моторов – см. рис. 1).

Изображение - Ремонт блока питания стиральной машины своими руками proxy?url=http%3A%2F%2Fradioradar.net%2Ffiles%2FImage%2Frepair_electronic_technics%2Frepair_home_appliances%2Fariston_indesit_evo2%2Fpic2

Рис. 2. Расположение платы ИП на “липецком” модуле

Назначение выводов микросхем семейства TinySwitch-II

Для начала хочу вас предупредить о том, что я даю только проверенный материал, поломка о которой будет идти речь в этой статье, легко устраняется при помощи замены нескольких емкостей. Если в вашем случае, это не помогло или у вас другие проблемы с модулем управления, я навряд ли смогу вам помочь. Дело в том, что мозги стиральной машины, довольно сложная деталь и если даже вы видите что сгорел какой-то диод или резистор, это не означает, что его замена приведет к работоспособности блока. Выход из строя одной детали, зачастую тянет за собой, проблему с другими комплектующими, поэтому прежде чем лесть в модуль, хорошо подумайте — обладаете вы теми навыками которые нужны при данной процедуре или нет, ведь эта запчасть стоит немалых денег. Дальше я буду говорить языком вопрос-ответ, тот кто следит за моим блогом, помнит что на нём был форум и эта статья написана на основе одной из тем, этого форума

Суть проблемы в том, что у меня стиралка Индезит и на ней не с того не с всего замигала панель индикации, то есть лампочки над кнопками и мигает быстро-быстро, как цветомузыка. Посмотрел в инструкцию, там нет такого, все коды ошибок перешустрил не чего не нашёл

Судя по всему в вашей стиральной машине, а точнее в блоке управления вышел из строя блок питания. Снимите блок управления, если у вас стиральная машина с горизонтальной загрузкой, то он находится в левом нижнем углу вашей СМА, если смотреть сзади, в вертикалках в верху под панелью управления. Надо будет вытащить модуль из пластмассовой коробки и осмотреть ёмкости на предмет вздутия. Я думаю это вам поможет. Удачи

Спасибо за консультацию, сейчас буду пробывать. Снял плату, довольно таки сложно, пришлось открутить люк сзади стиральной машины, он на шести саморезах крепится и пробовать доставать оттуда, правда не чего не получилось, не смог провода отсоединить. В итоге положил машинку на бок, на сторону, где порошок засыпается, правда водой пол залил, надо было сначала воду со стиральной машины слить. Короче когда положил на бок, вот только тогда без труда отсоединил провода. Я это тем написал, кто модуль управления сам будет снимать. Только что вытащил из коробки плату и в правду, две ёмкости вздулось, сейчас с приёмника сниму и сюда впаяю. Думаю через час отпишусь про результат

Быстрый парень, я ещё “А” не успел сказать, а он уже стиральную машину разобрал. Смотрите не перепутайте полярность на этих конденсаторах, очень часто бывает, что от незнания люди ставят их как зря, в итоге может сгореть панель индикации. Будьте внимательны

Куй железо не отходя от сайта. Ура получилось, стиральная машина стирает как миленькая. Интересно сколько я денег сэкономил. Спасибо за ваш труд, как благодарить не знаю, просто говорю спасибо

Я очень рад что вам помогло, то что я вам посоветовал. После выхода этой статье, ко мне в мастерскую попала стиральная машина, с подобной проблемой, тоже моргали все кнопки индикации на панели управления. Видео которое я снял, можно посмотреть ниже.

Видео про то, из-за чего мигают кнопки на панели управления стиральной машины Индезит

В дополнение хочу внести кое-какую ясность, по поводу ёмкости и вольтажа, на конденсаторах, которые надо менять. Дело в том, что эти кондёры, предназначены для гашения импульса, поэтому нежелательно ставить другие номиналы, то есть если емкость на 680 мкФ, то обязательно надо ставить такую же, но вольтаж, можно увеличить, к примеру поставить на 16 вольт и 680 мкФ. Не забывайте о полярности, это очень важно. Дальше рассмотрим еще один пример подобного ремонта, правда он оказался неудачным, так как сгорел процессор

Эта тема взята также из форма, который был на моём сайте. Суть проблемы заключалась в том, что хозяин стиральной машины Индезит, подключил провод заземления, на одну из клемм тэна, в результате получилось то, о чём вы будете читать в этом параграфе

Здравствуйте, помогите сделать ремонт модуля управления стиральной машины Индезит wisl, блок управления 215009152,02. Со слов хозяина не правильно подключил тэн, в результате чего отгорела нога реле к5, дроссель l1, резисторы и варисторы в норме. Были заменены шим tny264 и uln2003, а так же сетевой и вторичные конденсаторы. В результате идет скачкообразное напряжение от 0 до 6 вместо 12 вольт и от 0 до 2 вместо 5 вольт. В обвязке шим все менял, результат тот же. Возможно ли короткое замыкание в трансформаторе? Нашёл схему блока питания, может, что посоветуете

Судя по схеме, я делаю предположение, что вы мучаете плату EVO-II. Я не понял, как можно было подсоединить не правильно тэн, если он фазу на корпус кинул, то скорее всего было короткое замыкание, и результатом вполне может быть, что пробило микросхему. Как ведёт себя панель управления, что мигает. Для чего меняли uln2003, он был явно пробит или это просто ваши предположения. Трансформатор, на плате проверять не желательно, лучше снять и проверить. Замыкание на трансформаторе, вполне возможно, но ведёт оно себя по другому, навряд ли были бы импульсы. Такое поведение, больше похоже на пробитый диод, стабилитрон, ёмкость или транзистор, и ещё – шим точно рабочий поставили. Замеры делали с трансформатора? И если да то копать надо цепь до него. Короче причин может быть куча. Из личного опыта, в подобных случаях, я в первую очередь, проверяю детали которые я обозначил на фото, их номиналы под фото, потом отпаяйте uln2003 и проверьте без неё, дальше по обстоятельствам. И пишите про результат

стабилитрон = 4.35В, СМД ёмкость 0.1 мкФ вот только вольтаж не знаю беру с других плат, номинал транзистора тоже не помню – опять таки с другого модуля снимаю, как то не было нужды искать

Да именно фаза на корпусе была, на блоке индикации ни чего не работает, т.к нет постоянного напряжения 12 вольт, uln2003 менял щелкали все реле в такт, кз на всех ножках, память целая читается – шьется. Все замеры сделаны с нагрузкой, лампочка 12в мигает в такт, ёмкость при замере 280 вольт без пульсаций, снял все симисторы, варисторы и реле, на выходе голый бп, не считая ulnку, что бы не разорвать 12 в, без нее, то же самое на 5 вольтах. На счет транзистора не уверен, аналог для bc817? И где на схеме стоит диод p6ke?

Аналог транзистора, надо по инету искать, а вообще у меня хлама много, я с убитых плат снимаю, а где диод стоит – по номиналу не скажу, а вообще похоже, что действительно где то кз идёт. Попробуйте трансформатор, может вправду на нём кз, хотя обычно пульсации, на него не похоже. Что то тут попахивает выходом из строя процессора, а почему с трансформатора пульсация идёт, не держа в руках платы трудно, что то советовать. Стабилитрон с транзистором попробуйте поменять

С диодом разобрался, д9 по схеме, стабилитрон менял, к сожалению транзистор не подберу ни как из того что есть

Без него капать дальше, просто смысла нет, вполне возможно, что он может брехать.

Совсем убрал Т1, тоже самое.

Мастер. Снимайте трансформатор, а вообще я уже писал, что похоже на то, что микросхему пробило. После такого удара по мозгам, мало когда они выживают, получается так, что фаза практически на прямую на микруху попала. Мне сегодня Индезит привезли с такой же проблемой, в общем взорвался тэн, хозяин вызвал мастера, тот сказал, что модуль умер. Дальше история такая – клиент, решил сделать ремонт своими руками, поменял тэн и модуль управления, короче говорит, что мол опять такая же фигня, мол не чего не работает и не чего не горит. Я заднюю крышку снял, а там земля на тэн подсоединена, только не посмотрел, что за плата (Аркадия или ЭВО-2), очень спешил. Во вторник кину на стенд, может там, что накопаю, поломка в принципе идентична. Но думаю, что придётся микруху менять или весь модуль. В общем во вторник буду смотреть

Нет видео.

Видео (кликните для воспроизведения).

Заменил т1 на кт3102б, блок питания заработал после снятия микропроцессора. Мозги умерли, тема закрыта

Изображение - Ремонт блока питания стиральной машины своими руками photo-for-site

Приветствую! Меня зовут Петр. Я с юности любил собирать автомодели и парапланы, позже мое хобби выросло в нечто большее и я долгое время работал мастером в компании “муж на час”. За многолетний опыт в моей копилке оказались огромное количество различных схем и реализаций ремонта и монтажа своими руками различных устройств. Не все “рецепты” принадлежат мне, но считаю что такие знания должны быть в открытом доступе. Это и стало причиной создать данный сайт.

Как проверить транзистор мультиметром не выпаивая

Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h21э.

Проверка транзистора

Проверка транзистора

Однако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.

Эквивалентные схемы транзисторов

Эквивалентные схемы транзисторов

Так можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор — база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.

Но напряжение источника питания, приложенное к переходу эмиттер — коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.

Как проверить p-n-p транзистор мультиметром

Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.

Находим обратное сопротивление переходов

Находим обратное сопротивление переходов

Минус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 — 1200 Ом. Чтобы проверить переходы коллектор — база и эмиттер — база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.

Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.

Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.

Как найти цоколевку транзистора мультиметром

Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.

Как найти эмиттер и коллектор

Как найти эмиттер и коллектор

Допустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.

На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база — коллектор имеет меньше значение сопротивления, чем переход база — эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *