Как найти наименьший угол трапеции
Перейти к содержимому

Как найти наименьший угол трапеции

  • автор:

СРОЧНО!
Сумма двух углов равнобедренной трапеции равна 352° . Найдите меньшие угол трапеции. Ответ дайте в градусах. Заранее спасибо!

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

1. Дано действительное число – цена 1 кг конфет. Вывести стоимость 0,5; 1; 1,5 … 10 кг конфет. (Подсказка – используем цикл WHILE).

Программа должна иметь следующий вид:

Компьютер запрашивает стоимость одного килограмма конфет.

Пользователь вводит стоимость одного килограмма конфет, и компьютер выводит на экран:

Трапеция, ее свойства, формулы площади, высоты, сторон

Трапеция, виды, элементы, свойства

Трапеция, ее свойства, формулы площади, высоты, сторон.

Трапеция – это выпуклый четырехугольник, у которого только одна пара сторон параллельна.

Трапеция (понятие, определение):

Трапеция (от др.-греч. τραπέζιον – «столик» от τράπεζα – «стол») – это выпуклый четырёхугольник, у которого две стороны параллельны, а другие две стороны не параллельны.

Трапеция – это выпуклый четырехугольник, у которого только одна пара сторон параллельна.

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, и стороны не равны между собой.

Выпуклым четырёхугольником называется четырёхугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Виды трапеций:

Равнобедренная трапеция или равнобокая трапеция – это трапеция, у которой боковые стороны равны.

Трапеция, виды, элементы, свойства

Рис. 2. Равнобедренная трапеция

Прямоугольная трапеция – это трапеция, один из углов при боковой стороне которой прямой.

Прямоугольная трапеция – это трапеция, имеющая прямые углы при боковой стороне.

Трапеция, виды, элементы, свойства

Рис. 3. Прямоугольная трапеция

Элементы трапеции: основания, боковые стороны, средняя линия и высота:

Параллельные стороны трапеции называются основаниями трапеции, а две другие – непараллельные – боковыми сторонами.

Трапеция, виды, элементы, свойства

AD и BC – основания трапеции, AB и CD – боковые стороны трапеции.

AD – большее основание трапеции, BC – меньшее основание трапеции.

Отрезок, соединяющий середины боковых сторон трапеции, называется средняя линия.

Трапеция, виды, элементы, свойства

Рис. 5. Трапеция и срединная линия

Расстояние между основаниями трапеции называется высотой трапеции.

Трапеция, виды, элементы, свойства

Высота трапеции (h) определяется формулой:

Трапеция, виды, элементы, свойства

где b – большее основание трапеции, a – меньшее основание трапеции, c и d – боковые стороны трапеции.

Свойства трапеции:

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Трапеция, виды, элементы, свойства

Рис. 7. Трапеция и срединная линия

2. Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.

Трапеция, виды, элементы, свойства

3. Сумма внутренних углов трапеции (и любого другого четырёхугольника) равна 360° .

Сумма углов, прилежащих к боковой стороне трапеции, равна 180° .

4. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

5. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Рис. 10. Трапеция

6. Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

7. В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.

В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).

8. Диагонали трапеции делят ее на 4 треугольника.

Два из них, прилежащие к основаниям, подобны.

Два других, прилежащие к боковым сторонам, имеют одинаковую площадь.

Треугольники BCO и AOD подобны. Коэффициент подобия треугольников (k) находится как отношение оснований трапеции. k = AD / BC. Отношение площадей этих подобных треугольников есть k 2 .

Треугольники ABO и CDO имеют одинаковую площадь.

9. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями.

BC : AD = OC : AO = OB : DO

10. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

где b – большее основание трапеции, a – меньшее основание трапеции, c и d – боковые стороны трапеции.

11. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основания трапеции, так же делит диагонали пополам.

AK = KB, AM = MC, BN = ND, CL = LD,

KL – средняя линия

KL – средняя линия, UV – отрезок, который соединяет основания трапеции

12. Средняя линия разбивает трапецию на две трапеции, площади которых соотносятся как:

где b – большее основание трапеции, a – меньшее основание трапеции, S1 и S2 – площади образованных трапеций, в результате разделения средней линией.

Трапеция, виды, элементы, свойства

Свойства равнобедренной трапеции:

1. Прямая, которая проходит через середины оснований, перпендикулярна основаниям, тем самым, является осью симметрии равнобедренной трапеции.

2. Высота, опущенная из вершины на большее основание равнобедренной трапеции, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.

3. Углы при любом основании равнобедренной трапеции равны.

4. Сумма противоположных углов равнобедренной трапеции равна 180°.

5. Длины диагоналей равнобедренной трапеции равны.

6. Вокруг равнобедренной трапеции можно описать окружность.

7. При перпендикулярности диагоналей в равнобедренной трапеции ее высота равна полусумме оснований.

Формулы трапеции:

Пусть a – большее основание трапеции, b – меньшее основание трапеции, c – левая сторона трапеции, d – правая сторона трапеции, α и β углы при нижнем основании трапеции, d1 и d2 – диагонали трапеции, m средняя линия трапеции, h высота трапеции, γ и δ – углы между диагоналями трапеции, S площадь трапеции, P периметр трапеции.

Формулы для определения сторон трапеции:

Через среднюю линию и одно из оснований трапеции:

Через высоту и углы при нижнем основании трапеции:

a = b + h · (ctg α + ctg β)

b = a – h · (ctg α + ctg β)

Через боковые стороны и углы при нижнем основании:

a = b + c· cos α + d· cos β

Через высоту и углы при нижнем основании трапеции:

Формулы для определения средней линии трапеции:

Через длины оснований трапеции:

Через площадь и высоту трапеции:

Формулы для определения высоты трапеции:

Через сторону и прилегающий угол при нижнем основании трапеции:

h = c· sin α = d· sin β

Через диагонали трапеции и углы между ними:

Через диагонали трапеции, углы между ними и среднюю линию трапеции:

Через площадь и длины оснований трапеции:

Через площадь и длину средней линии трапеции:

Формула для определения периметра трапеции:

Формулы для определения площади трапеции:

Через основания и высоту трапеции:

Через среднюю линию и высоту трапеции:

Через диагонали трапеции и угол между ними:

Через все стороны трапеции:

С помощью формулы Герона для трапеции:

Как называется объемная трапеция?

Если трапецию изобразить в объеме, то такая фигура будет напоминать усеченную пирамиду.

В правильной усеченной пирамиде боковые грани являются равнобокими трапециями.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Мировая экономика

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 770)
  • Экономика Второй индустриализации России (104 768)
  • Этилен (этен), получение, свойства, химические реакции (36 755)
  • Программа искусственного интеллекта ЭЛИС (31 828)
  • Крахмал, свойства, получение и применение (30 607)
  • Природный газ, свойства, химический состав, добыча и применение (30 264)
  • Метан, получение, свойства, химические реакции (29 957)
  • Целлюлоза, свойства, получение и применение (29 080)
  • Пропилен (пропен), получение, свойства, химические реакции (28 182)
  • Прямоугольный треугольник, свойства, признаки и формулы (27 232)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Как найти наименьший угол трапеции

Тип 15 № 132778

Решение.
Начертим равнобедренную трапецию ABCD.
Проведем в ней диагональ АС.

По условию задачи угол АСB равен 30 градусов, а угол ACD равен 105 градусов.
Найдем угол BCD:

\[\angle BCD=\angle ACB+\angle ACD=30<>^\circ +105<>^\circ =135<>^\circ .\]» width=»399″ height=»17″ /></p>
<p><img decoding=

\[\angle CDA=180<>^\circ -105<>^\circ -30<>^\circ ;\]» width=»232″ height=»18″ /></p>
<p><img decoding=

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

равнобедренная трапеция

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

прямоугольная трапеция

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

средняя линия

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

свойство средней линии трапеции

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

биссектриса в трапеции

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Отношение площадей этих треугольников есть .

57

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

свойства трапеции, равновеликие треугольники

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

окружность, вписанная в трапецию

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

qk

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

е

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

трапеция с углами при основании в сумме 90

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

свойства равнобедренной трапеции

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

трапеция вписана в окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

диагонали трапеции перпендикулярны

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

4

Площадь

или где – средняя линия

площадь трапеции

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *