Как найти 3 сторону треугольника если известны 2 стороны
Перейти к содержимому

Как найти 3 сторону треугольника если известны 2 стороны

  • автор:

Все формулы для треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Формула стороны треугольника по теореме косинусов

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Формула стороны по теореме синусов

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Формулы для прямоугольного треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы катета прямоугольного треугольника

Формулы для катета, ( b ):

Формулы катета прямоугольного треугольника

Формулы для гипотенузы, ( c ):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Найти длину высоты треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через стороны

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и угол

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через сторону и площадь

Формула длины высоты через стороны и радиус, ( H ):

Формула длины высоты через стороны и радиус

5. Формулы высоты прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике H — высота из прямого угла

a, b — катеты

с — гипотенуза

c 1 , c 2 — отрезки полученные от деления гипотенузы, высотой

α , β — углы при гипотенузе

Формула длины высоты через стороны, ( H ):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, ( H ):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, ( H ):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , ( H ):

Формула длины высоты через составные отрезки гипотенузы

6. Найти длину биссектрисы в треугольнике

L — биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b — стороны треугольника

с — сторона на которую опущена биссектриса

d, e — отрезки полученные делением биссектрисы

γ — угол ABC , разделенный биссектрисой пополам

p — полупериметр, p =(a+b+ c )/2

Длина биссектрисы через две стороны и угол, ( L ):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, ( L ):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, ( L ):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d , e , ( L ):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

7. Биссектриса прямоугольного треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b — катеты прямоугольного треугольника

с — гипотенуза

α — угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L ):

Формула длины биссектрисы через катеты

Формула длины биссектрисы через гипотенузу и угол, ( L ):

Формула длины биссектрисы через гипотенузу и угол

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

L — биссектриса, отрезок ME , исходящий из острого угла

a, b — катеты прямоугольного треугольника

с — гипотенуза

α , β — углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, ( L ):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула длины биссектрисы через катет и гипотенузу, ( L ):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

8. Длина биссектрисы равнобедренного треугольника

Длина биссектрисы равнобедренного треугольника

L — высота = биссектриса = медиана

a — одинаковые стороны треугольника

b — основание

α — равные углы при основании

β — угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, ( L ):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула высоты, биссектрисы и медианы, через стороны, ( L ):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

9. Найти медиану биссектрису высоту равностороннего треугольника

Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L — высота=биссектриса=медиана

a — сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, ( L ):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

10. Найти длину медианы треугольника по формулам

Медиана — отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M — медиана, отрезок |AO|

c — сторона на которую ложится медиана

a, b — стороны треугольника

γ — угол CAB

Формула длины медианы через три стороны, ( M ):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, ( M ):

Формула длины медианы через две стороны и угол между ними

11. Длина медианы прямоугольного треугольника

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c , пополам.

Медиана в прямоугольном треугольнике ( M ), равна, радиусу описанной окружности ( R ).

Длина стороны треугольника

Вычисление длины стороны треугольника по двум другим и углу между ними согласно теореме косинусов.

После написания калькулятора Длина стороны прямоугольного треугольника по запросу пользователя вдруг вспомнил, что теорема Пифагора есть частный случай теоремы косинусов:

Воистину, тема треугольника неисчерпаема, как атом. На сайте уже был один калькулятор, который использовал теорему косинусов — Нахождение углов треугольника по заданным сторонам, а вот и второй, который просто находит длину противолежащей стороны.

Длина стороны прямоугольного треугольника

Если даны две стороны прямоугольного треугольника, то третья сторона может быть вычислена по теореме Пифагора.

Если известны два катета, то длина гипотенузы

Гипотенуза прямоугольного треугольника

Если известны катет и гипотенуза, то длина оставшегося катета

Катет прямоугольного треугольника

Онлайн калькулятор позволяет вычислить длину стороны прямоугольного треугольника по двум другим с использованием теоремы Пифагора.
Онлайн калькуляторы

Calculatorium.ru — это бесплатные онлайн калькуляторы для самых разнообразных целей: математические калькуляторы, калькуляторы даты и времени, здоровья, финансов. Инструменты для работы с текстом. Конвертеры. Удобное решение различных задач — в учебе, работе, быту.

Актуальная информация

Помимо онлайн калькуляторов, сайт также предоставляет актуальную информацию по курсам валют и криптовалют, заторах на дорогах, праздниках и значимых событиях, случившихся в этот день. Информация из официальных источников, постоянное обновление.

Найти сторону прямоугольного треугольника зная две другие стороны

Формула расчёта длины стороны треугольника зная две другие стороны Если надо узнать длину гипотенузы, то укажите длину катетов (a,b), если надо узнать длину катета – укажите гипотенузу (c) и катет.

Онлайн калькулятор делает расчёт по формуле: c=[квадратный корень](a2+b2) — для длины гипотенузы. a=[квадратный корень](c2-b2) и b=[квадратный корень](c2-a2) — для длины катета.

Найти сторону прямоугольного треугольника зная две другие стороныДругая Формула

Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *