Математика
Дробь, если грубо, это особая запись числа. Если один арбуз разделить на шесть человек, то каждому достанется кусок, который является частью от того, что имели до деления.
Сейчас 3 апельсина разделим на 20 человек. Каждому достанется часть от того, что было.
Если взять два куска арбуза (предыдущая картинка), то получим дробь
На следующем рисунке изображена дробь (закрашенная часть)
Обозначение дроби
Обозначается дробь, как .
Черта «-» обозначает деление! Это то же самое, что 1 разделить на 5 или Поэтому, когда 4 конфеты делить на двоих человек, получим дробь , а это 4 разделить на 2, каждый получит по 2 конфеты. Дробь
Верхнее число дроби, называется числителем, нижнее — знаменателем.
Зззззапомни зззззнаменатель внизззззу.
Виды дробей
Дроби бывают положительными и отрицательными. Это зависит от того, какое число в числителе (сверху) — отрицательное или положительное. Знак «-» у отрицательной дроби принято писать перед чертой дроби. Можно его записать сверху, если так удобнее. Знак «+» обычно не пишут, аналогично положительным числам.
Дробь, у которой числитель меньше знаменателя, называется правильной. Если наоборот, числитель больше знаменателя, то дробь неправильная.
Неправильную дробь можно записать смешанным числом (выделив целую часть)
Целая часть у дроби — это то же самое, что , однако знак «+» принято не записывать.
Особый вид чисел, которые можно представить в виде дробей — десятичные. У таких дробей в знаменателе 10 или 100, или 1000 и т.д.
Любое рациональное число можно обратить в конечную или бесконечную периодическую десятичную дробь. Например, является конечной дробью. Бесконечная десятичная дробь называется периодической, если у нее, начиная с некоторого места, одна цифра или группа цифр повторяется. Повторяющуюся группу цифр называют периодом и записывают в скобках. Например, или
Бесконечная десятичная непериодическая дробь представляется таким числом
Представление числа в виде дроби
Любое целое число представляется в виде дроби, знаменатель которой единица. При делении числа на единицу мы получаем то же число.
Если знаменатель и числитель дроби одинаковые числа, то эта дробь равна единице. При делении числа на себя получаем единицу.
Любая дробь, у которой числителем является ноль, равна нулю. Если ноль делить на любое число, получим ноль.
Не существует дроби, у которой в знаменателе ноль . Так как
Обратное число
Число называется обратным числу
.
Как перевести десятичную дробь в обыкновенную
Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.
Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:
Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?
Основной алгоритм
На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.
Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:
-
Переписать исходную дробь в виде новой дроби: в числителе останется исходная десятичная дробь, а в знаменателе нужно поставить единицу. При этом знак исходного числа также помещается в числитель. Например:
Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:
Примеры перехода от десятичной записи дробей к обычной
Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?
Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.
Более быстрый способ
В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:
- Посчитать, сколько цифр стоит после запятой. Например, у дроби 1,75 таких цифр две, а у 0,0025 — четыре. Обозначим это количество буквой $n$.
- Переписать исходное число в виде дроби вида $\frac<<<10>^
>>$, где $a$ — это все цифры исходной дроби (без «стартовых» нулей слева, если они есть), а $n$ — то самое количество цифр после запятой, которое мы посчитали на первом шаге. Другими словами, необходимо разделить цифры исходной дроби на единицу с $n$ нулями. - По возможности сократить полученную дробь.
Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:
Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: $<<10>^
Ещё один пример:
Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на $<<10>^
Наконец, последний пример:
Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.
Что делать с целой частью
На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.
Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:
Затем вспоминаем про «утерянную» единицу и дописываем её спереди:
Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:
В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)
В заключение хотел бы рассмотреть ещё один приём, который многим помогает.
Преобразования «на слух»
Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.
А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.
Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:
Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому
А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому
В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 10 3 , а 10 = 2 ∙ 5, поэтому
\[\begin
Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.
На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».
Смешанные числа, перевод смешанного числа в неправильную дробь и обратно
В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.
Понятие смешанного числа
Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.
Смешанное число представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.
Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .
Его также можно записать в виде n + a b = n a b .
Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .
Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.
Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.
Как соотносятся между собой неправильные дроби и смешанные числа
Эту связь проще всего проследить на конкретном примере.
Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .
Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.
Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно ( 1 + 3 4 ) . У нас опять будет 1 3 4 .
Ответ: 7 4 = 1 3 4 .
Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.
8 4 = 2 , так как 8 : 4 = 2 .
Как перевести смешанное число в неправильную дробь
Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.
Для этого нужно воспроизвести следующую последовательность действий:
1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b
2. Далее заменяем целую часть на дробь со знаменателем, равным единице (то есть записываем n как n 1 ).
3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.
Разберем это действие на конкретном примере.
Представьте 5 3 7 в виде неправильной дроби.
Решение
Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .
Последний шаг – сложение дробей, имеющих разные знаменатели:
5 1 + 3 7 = 35 7 + 3 7 = 38 7
Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .
Ответ: 5 3 7 = 38 7 .
Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.
Представьте 15 2 5 в виде неправильной дроби.
Решение
Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .
Ответ: 15 2 5 = 77 5 .
Как выделить из неправильной дроби целую часть
Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.
Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.
Разберем, как именно это делается.
Любая неправильная дробь a b –это смешанное число q r b . Здесь q представляет собой неполное частное, а r – это остаток от a b . Таким образом, целая часть смешанного числа есть неполное частное от деления a b , а дробная – это остаток.
Приведем доказательство этого утверждения.
Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .
Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:
Выделение целой части из неправильной дроби a b осуществляется таким образом:
1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.
2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.
Представьте 107 4 в виде смешанного числа.
Решение
Делим 104 на 7 столбиком:
Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .
В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .
Ответ: 118 7 = 16 6 7 .
Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).
Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a : b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .
Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27 : 3 = 9 .
Ребят объясните как понять Представить число в виде дроби с заданным числителем или знаменателем? если можно по подробнее и по понятливее
Это значит что числитель или знаменатель будет задан в условии, и число, которое должно получиться в результате тоже известно. ваша задача сводится к нахождению неизвестного, путем перемножения (если ) неизвестен числитель дроби, либо деления числителя на число, когда нужно найти знаменатель.
пример представьте число 5 в виде дроби со знаменателем 2,
нам неизвестен числитель дроби, тогда число нужно умножить на знаменатель, то есть решить уравнение вида:
х/2=5
х=5*2=10
5=10/2
пример 2. представьте число 5 в виде дроби с числителем 20,
20/х=5,
х=20/5=4
5=20/4