Как задать время работы на ардуино
Перейти к содержимому

Как задать время работы на ардуино

  • автор:

Arduino UNO урок 3 — Тайминг

Обратимся к первому уроку, где мы управляли LED. Между включением и выключением которого была секундная задержка.

В используемой там программе (см. код ниже) был один очень большой недостаток. Для выдержки паузы между вкл/выкл LED в 1 сек. нами была использована функция delay(). В это время контроллер не может выполнять другие команды в главной функции loop()

Первое, что мы сделаем, это внесем небольшие корректировки в функцию loop(). Чтобы сделать код более компактным и изящным, заменим 2 пары строчек на одну пару. Вместо установки значения в HIGH, а затем обратно в LOW, мы получим текущее значение ledPin и проинвертируем его. Т.е. если оно было HIGH, то станет LOW и наоборот.

Отлично! Теперь мы усовершенствуем функцию delay(). Взамен, мы будем использовать функцию millis(). Данная функция возвращает количество миллисекунд, прошедшее с момента запуска текущей программы. Функция переполнится (вернется в нуль) приблизительно через 50 суток работы программы.

Альтернативной функцией является micros(), которая возвращает количество микросекунд, прошедшее с момента запуска текущей программы. Функция переполнится (вернется в нуль) приблизительно через 70 минут работы программы.

В нашем уроке мы будем использовать функцию millis():

В данном примере мы ввели две дополнительные переменные currentTime и loopTime. В функции setup() обе переменные имеют одно и тоже значение. В функции loop(), переменная currentTime каждый раз обновляется в цикле. Когда currentTime больше чем loopTime на 1 секунду (loopTime + 1000), то LED меняет свое состояние, а переменной loopTime присваивается текущее значение currentTime.

Обратите внимание, что в данном примере мы не использовали функцию delay() и процессор может выполнять другие операции.

Таймеры и многозадачность на Ардуино

image

Сегодня мы поговорим о такой актуальной теме, как таймеры и организация многозадачности на Arduino. Поводом для написания этой статьи послужили лекции Олега Артамонова @olartamonov для студентов МИРЭА в рамках IoT Академии Samsung, а точнее, высказывание Олега, цитата (2-я лекция, 1:13:08):

Судя по высказываниям Олега, у него весьма превратное представление об Arduino вообще и об «ардуинщиках» в частности. Мигание пятью светодиодами в означенных им режимах это абсолютно тривиальная задача для Arduino, а для Arduino Mega Server это вообще не задача, а сущее недоразумение — его штатными средствами организуется многозадачность, которая легко управляет сотнями различных сущностей (светодиодов, сервоприводов, шаговых моторов и т. д.) в реальном времени.

Давайте вместе разберёмся как организовать многозадачность на Arduino, а заодно поможем студентам МИРЭА избавится от навязанных им стереотипов восприятия по отношению к социо-культурному и технологическому феномену нашего времени под названием Arduino.

Лекции Олега Артамонова

Нужно отдать должное, сами лекции Олега хороши — в них даётся много полезной и хорошо структурированной информации о микроконтроллерах и я бы рекомендовал всем заинтересованным в этом вопросе с ними ознакомиться. Единственным недостатком этих лекций мне показался неприкрытый техно-снобизм в отношении Arduino, которая выступает в них в роли «мальчика для битья».

В частности, на протяжении всех лекций Олегом делаются безапелляционные заявления о непригодности Arduino для построения сложных многозадачных систем, что просто противоречит истине и реальной практике.

На Arduino можно делать потрясающие многозадачные системы в которых в (псевдо, естественно) многозадачном режиме одновременно работают десятки и сотни сущностей (светодиодов, датчиков, актуаторов, сервоприводов, шаговых моторов, беспроводных и проводных интерфейсов и т. д.).

Не будем далеко ходить за примерами. Вот проект Зимнего сада («Умной теплицы») в котором в реальном времени в многозадачном режиме работают следующие сущности:

image

Топология распределённого nRF24 контроллера с огромным числом подключённого и работающего в реальном времени оборудования. Пользователь имеет дело только с «базой», работа nRF24 партнёра полностью прозрачна для него. И, да, это Arduino.

— 7 сервоприводов
— 9 шаговых моторов
— 6 реле
— 3 датчика влажности почвы
— 2 датчика освещённости
— Датчик уровня воды
— Датчик влажности и температуры воздуха

На nRF24 удалённой части:

— 12 датчиков влажности почвы
— 12 реле
— 3 шаговых мотора
— 2 датчика освещённости
— Датчик уровня воды

Кроме этого, в реальном времени функционирует собственно сама nRF24 связь между двумя распределёнными частями системы и Ethernet интерфейс сервера и серверный движок, обеспечивающий веб-интерфейс пользователя системы.

Итого, в реальном времени, в многозадачном режиме на 8-битной Меге функционирует как минимум 60 сущностей (и это не считая множества сервисов самой операционной системы AMS, с ними число сущностей приблизится к сотне). Что очевидным образом никак не согласуется с высказыванием о том, что «на Arduino невозможна настоящая многозадачность и мигать даже пятью светодиодами на ней проблематично».

Пара слов в защиту Arduino

(Хотя очевидно, что Arduino как социо-культурный и технологический феномен с многомиллионной армией поклонников и многими тысячами потрясающих проектов в защите не нуждается.)

Я много раз говорил и ещё раз повторю, что Arduino в своей софтверной составляющей это, по сути, просто один из возможных уровней абстракции (как и любой другой) со своими достоинствами и недостатками. И пользователю нет абсолютно никакой разницы, что «крутится» внутри его маленького кусочка кремния — «чистая» Arduino, RTOS, RIOT OS, AMS или какая-то другая математическая абстракция представления и управления железными ресурсами контроллера.

Пользователю важно решение его проблем — чтобы контроллер поливал растения, включал свет, управлял шторами и т. д. И основная проблема не в инструментах, используемых в разработке, а в умении ими пользоваться и, банально, в воображении и инженерном видинии самого разработчика.

Как это работает?

Сама по себе многозадачность на микроконтроллерах может быть организована разными способами, в данном случае речь пойдёт о самом простом — процессы по очереди получают управление и добровольно отдают его после использования своего кванта времени. Этот способ, конечно, не лишён очевидных недостатков, но, как говорится, практика — критерий истины и он прекрасно зарекомендовал себя в реальных условиях: он используется как в стандартных дистрибутивах Arduino Mega Server, так и во множестве проектов на AMS Pro. И эти системы работают в режиме 24/7 и имеют подтверждённые аптаймы во многие месяцы беспроблемной работы.

image

Это индикация около сотни сущностей распределённой nRF24 системы, управляемых независимо друг от друга в реальном времени. Обратите внимание на два последних индикатора «CPU» — при этом даже на 8-битной Меге загрузка процессора ровна нулю (то есть система полностью свободна).

Немного о таймерах

Для организации управления сложными системами недостаточно просто передавать по очереди управление между процессами и наряду с автоматической передачей управления в AMS используются различные виды таймеров: циклические, циклические с заданным количеством повторений (пакетные), одиночные, рандомные, смешанные и т. д. Всё это организовано нативными средствами Arduino и не использует прерывания или прямое программирование таймеров микроконтроллера (но прерывания, конечно же, использоваться системой «по их прямому назначению»).

Что опять же вступает в прямое противоречие с высказыванием «На 3 светодиода железных таймеров хватит, с дальше у ардуинщиков начнутся проблемы». Не начнутся. Нам доступны любые типы таймеров в любом количестве. И, при желании, мы можем наделать себе ещё сколько угодно новых и сколь угодно экзотических.

Основной кейс

Основной кейс при данном типе организации многозадачности — это создавать так называемый «неблокирующий» код, то есть код, который не использует функцию delay(), которая просто приостанавливает выполнение программы на заданное время.

Реальное время

Описываемый способ реализации многозадачности можно охарактеризовать как «soft-realtime», типовое время задержки в системе составляет 10 мс (но пиковые задержки могут быть значительно больше и не нормируются). Это накладывает известные ограничения на спектр применения данного решения, но для большинства «бытовых» задач (и не только) он прекрасно подходит, см. пример выше.

Если требуется управление в более жёстком реальном времени, то это требует специальной оптимизации кода под конкретную задачу, перестройки архитектуры или, в совсем крайних случаях, выделения отдельного контроллера под специфические функции. Как пример, выделение отдельного контроллера эффектов умной светодиодной ленты.

Это общее теоретическое описание работы многозадачности в Arduino вообще и в AMS в частности, теперь перейдём к рассмотрению практических примеров.

Циклические таймеры

image

Рассмотрим реализацию самых простых циклических таймеров. Это таймеры (в терминологии AMS «cycles»), которые включаются через определённые, заранее заданные промежутки времени и используются для активации циклических процессов.

Вообще, таймеры программно лучше оформлять в виде объектов, но в стандартной поставке Arduino Mega Server эти таймеры реализованы в виде функций, поэтому, для начала, рассмотрим их в этой ипостаси.

Использовать циклические таймеры очень просто: достаточно поместить код, который нужно периодически выполнять, между скобками оператора if. Если нужно использовать другой интервал срабатывания, то просто используем нужную переменную вместо cycle1s. Различных циклов можно сделать сколько угодно — система даже на 8-битной Меге без проблем потянет обслуживание буквально сотен таких таймеров (только, естественно, нужно не забывать чтобы вызываемый код не был блокирующим).

Теперь организация работы таймеров. Определение управляющих переменных в главном файле:

Набор интервалов может быть расширен любыми нужными значениями от десятков миллисекунд до суток и более.

И далее код подключения этих таймеров в основном цикле. В начале главного цикла проверяется не сработал ли какой-либо из таймеров, а в конце все поднятые флаги таймеров сбрасываются. Любой системный код находится между этими двумя функциями и, что наиболее важно, любой из таймеров можно использовать многократно в любых частях кода системы.

Циклические таймеры в виде объектной библиотеки

Теперь рассмотрим организацию тех же таймеров, но в более правильном объектном виде, оформленном в готовую библиотеку. Назовём её myCycle.

Заголовочный файл в котором представлены объявления класса, методов и некоторых предопределённых констант:

И файл реализации в котором находится код библиотеки:

Использование этого варианта тоже просто и имеет некоторые преимущества перед «функциональным» вариантом: тут можно очень легко объявлять таймеры с нужными интервалами и не нужно заранее создавать множество таймеров «на всякий случай».

В главном файле:

Добавляем функции обслуживания работы таймеров:

В главном цикле используем объявленные таймеры в любом нужном месте кода:

Библиотека имеет несколько более широкий функционал, чем код, приведённый в первом варианте. Например, она содержит методы активации/дезактивации таймеров, установки и получения текущего значения, рестарта и реинициализации таймеров, что ещё больше расширяет возможности использования их в практических задачах.

Другие виды таймеров на Arduino

image

Чтобы не загромождать статью, я не буду здесь приводить код и разбирать работу всех возможных типов таймеров — все они строятся по одним и тем же принципам. Если эта тема будет интересна, то можно будет написать отдельную статью об этом. Здесь я только дам общее описание таймеров, которые используются в AMS и прекрасно себя зарекомендовали на практике.

Циклические с заданным количеством повторений (пакетные)

Это таймеры, которые срабатывают заранее определённое количество раз. Например, вам нужно делать 3 попытки отправки сообщения по беспроводному каналу nRF24. Таймер активируется только 3 раза и соответственное количество раз делаются попытки отправки сообщений.

Тут же возможны различные расширения функциональности типа активации/дезактивации таймера в зависимости от определённых условий и т. п.

Одиночные

Это различные вариации на тему «автозагрузки», когда какое-либо действие выполняется через определённый интервал времени после старта контроллера или какого-либо события.

Рандомные

Иногда требуется не строгая периодичность выполнения каких-то действий, а наоборот некий разброс срабатываний возле некоторого среднего значения, для этих целей применяются так называемые рандомные таймеры.

Например, у вас есть два распределённых контроллера, которые связаны друг с другом по беспроводному каналу. Если одна система будет посылать свои сообщения другой, согласуясь со срабатыванием обычного таймера, например, раз в 20 секунд, то эти сообщения будут приходить на вторую систему в строго определённой «фазе», которая может попадать в «проблемный» интервал работы цикла второго контроллера, в результате его работа может быть нестабильной. Если в этом случае использовать рандомный таймер, то он «размажет» по времени моменты прихода сообщений от первого контроллера и проблемы удастся избежать.

Это только абстрактный пример для понимания того, что собой представляют рандомные таймеры. И вы можете ознакомиться с их реализацией — стандартный дистрибутив Arduino Mega Server содержит код такого таймера.

Смешанные

Тут полная свобода действий, можно как угодно комбинировать работу различных типов таймеров, используя запуск одних таймеров от других и их встроенную логику типа активации/дезактивации по условиям, изменение периода срабатывания «на лету» и т. п.

Нет практически никаких ограничений на количество таймеров и логику работы — их может быть сотни, даже на 8-битном контроллере.

Межпроцессное взаимодействие

Межпроцессное взаимодействие, семафоры, почтовые ящики и прочие атрибуты многозадачных систем организуются на Arduino тоже без каких-либо проблем — их можно организовать любым удобным для вас способом — начиная от передачи параметров через статические переменные и заканчивая упаковкой логики в любые классы и объекты, тут нет абсолютно никаких ограничений и проблем.

Подробное описание межпроцессного взаимодействия выходит за рамки этой статьи, но вы можете скачать себе дистрибутив Arduino Mega Server для любой платформы и самостоятельно ознакомиться с его устройством и работой.

Заключение

В общем, можно сказать, что средствами Arduino можно создать любые виды таймеров, запускать любое их количество и использовать любое их сочетание, другими словами, Arduino может удовлетворить любой каприз по таймерному (псевдо) многозадачному управлению сложными микроконтроллерными системами.

И это не должно быть секретом для студентов МИРЭА, как будущих инженеров микропроцессорных систем, ведь эти принципы можно применять на любой платформе.

Функции времени

Простейшей с точки зрения использования функцией времени является задержка: программа “зависает” внутри функции задержки и ожидает указанное время. Задержка позволяет очень удобно и наглядно организовать работу простой “однозадачной” программы, у нас есть два варианта задержек:

  • delay(time)
    • Задержка на указанное количество миллисекунд (мс). 1 секунда = 1’000 мс.
    • time принимает тип данных unsigned long и может приостановить выполнение на срок от 1 до 4 294 967 295 мс (

    • Задержка на указанное количество микросекунд (мкс). 1 секунда = 1’000’000 мкс.
    • time принимает тип данных unsigned int и может приостановить выполнение на срок от 4 до 16383 мкс (да, меньше чем максимум для этого типа данных) с разрешением 4 мкс.
    • Работает не на таймере, а на пропуске тактов процессора, поэтому может работать в прерывании и при отключенных прерываниях.
    • Иногда не совсем корректно работает с переменными, поэтому нужно стараться использовать константы ( const или просто число).
    • Часто используется в библиотеках для эмуляции цифровых интерфейсов связи.

    Задержки использовать очень просто:

    Мышление “задержками” – главная проблема новичков. Организовать работу сложной программы при помощи задержки – невозможно, поэтому дальше рассмотрим более полезные инструменты.

    Функция yield()

    Разработчики Arduino позаботились о том, чтобы функция delay() не просто блокировала выполнение кода, но и позволяла выполнять другой код во время этой задержки. Данный “костыль” получил название yield() и работает следующим образом: если объявить функцию

    то расположенный внутри неё код будет выполняться во время работы любой задержки delay() в программе! Это решение хоть и кажется нелепым, но в то же время позволяет быстро и без написания лишних костылей и таймеров реализовать пару параллельно выполняющихся задач. Это вполне соответствует идеологии Arduino – максимально простая и быстрая разработка прототипа. Рассмотрим простой пример: стандартный мигающий светодиод, но с опросом кнопки:

    Функции счёта времени

    Данные функции возвращают время, прошедшее с момента запуска программы, так называемый аптайм (англ. uptime). Таких функций у нас две:

      millis() – миллисекунды, тип unsigned long , от 1 до 4 294 967 295 мс (

    Эти функции позволяют организовать программу практически любой сложности с любым количеством параллельно выполняющихся по таймеру задач. Подробнее об этом поговорим в уроке про многозадачность.

    millis() в часы и секунды

    Миллисекунды – не самый удобный способ оценить время работы программы. Можно перевести его в более человеческие часы, минуты и секунды при помощи нехитрых математических операций:

    Руководство по таймерам Arduino для начинающих

    Платформа Arduino была первоначально спроектирована в 2005 году и первоначально предназначалась для того, чтобы люди, мало знакомые с электроникой и программированием, могли конструировать разнообразные электронные устройства. Но со временем она получила широкое распространение не только в кругах начинающих знакомиться с электроникой, но и среди профессионалов в сфере электроники.

    Внешний вид конструкции для изучения таймеров Arduino

    В отличие от языков программирования для микроконтроллеров AVR, ARM, PIC, STM, в которых нужно хорошо представлять структуру этих микроконтроллеров, язык программирования для платформы Arduino исключительно простой и понятный. Достаточно легко понять, к примеру, как работают функции digitalWrite(), AnalogWrite(), Delay() и др. не вникая в суть машинного языка, который спрятан внутри них. Также не нужно вникать в суть различных регистров микроконтроллера, которые используются для управления этими процессами.

    Но тем не менее, для лучшего понимания всех этих процессов, желательно все таки немного погрузиться внутрь этих процессов. К примеру, функция delay() используется для установки таймеров и битов регистров счета микроконтроллера AVR ATmega, являющегося основой платы Arduino.

    В этой статье мы рассмотрим как без использования функции delay() управлять задержками в программе, непосредственно имея дело с регистрами микроконтроллера. Для этого мы будем использовать программную среду Arduino IDE. Мы будем устанавливать соответствующие биты регистра таймера и использовать прерывание переполнения таймера (Timer Overflow Interrupt) чтобы переключать (включать/выключать) состояние светодиода каждый раз когда происходит прерывание. Для контроля длительности задержки в схеме будут использоваться кнопки, с помощью которых можно будет изменять заранее загружаемое значение в биты таймера.

    Что такое таймеры

    Что же представляют собой таймеры в современной электронике? Фактически это определенный вид прерываний. Это простые часы, которые могут измерять длительность какого-нибудь события. Каждый микроконтроллер имеет встроенные часы (осциллятор), в плате Arduino Uno его роль выполняет кварцевый генератор, расположенный на плате, который работает на частоте 16 МГц. Частота влияет на скорость работы микроконтроллера. Чем выше частота, тем выше скорость работы. Таймер использует счетчик, который считает с определенной скоростью, зависящей от частоты осциллятора (кварцевого генератора). В плате Arduino Uno состояние счетчика увеличивается на 1 каждые 62 нано секунды (1/16000000 секунды). Фактически, это время за которое плата Arduino Uno переходит от одной инструкции к другой (то есть выполняет одну инструкцию).

    Таймеры в Arduino Uno

    В плате Arduino Uno используется три таймера:
    Timer0: 8-битный таймер, используемый в таких функциях как delay(), millis().
    Timer1: 16-битный таймер, используемый в библиотеке для управления серводвигателями.
    Timer2: 8-битный таймер, используемый в функции tone().

    Регистры таймеров в Arduino Uno

    Для изменения конфигурации таймеров в плате Arduino Uno используются следующие регистры:

    1. Timer/Counter Control Registers (TCCRnA/B) – управляющие регистры таймера/счетчика

    Эти регистры содержат основные управляющие биты таймера и используются для управления предварительными делителями частоты (предделителями) таймера. Они также позволяют управлять режимом работы таймера с помощью битов WGM.

    Формат этих регистров:

    Формат регистров TCCRnA/B в Arduino

    Предделитель (Prescaler)

    Биты CS12, CS11, CS10 в регистре TCCR1B устанавливают коэффициент деления предделителя, то есть скорость часов таймера. В плате Arduino Uno можно установить коэффициент деления предделителя равный 1, 8, 64, 256, 1024.

    Настройка предделителя (Prescaler) в Arduino

    2. Timer/Counter Register (TCNTn) – регистры таймера/счетчика

    Эти регистры используются для управления счетчиками и для установки заранее загружаемого значения.

    Формула для расчета заранее загружаемого значения (preloader value) для необходимого интервала времени (Time) в секундах выглядит следующим образом:

    TCNTn = 65535 – (16×10 6 xTime in sec / Prescaler Value)

    Откуда берется величина 16х10 6 ? Здесь все просто — это переведенная в Герцы частота кварцевого генератора 16 МГц.

    Чтобы для таймера 1 (timer1) задать время равное 2 секундам, при коэффициент деления предделителя (Prescaler Value) равном 1024, получим:

    TCNT1 = 65535 – (16×10 6 x2 / 1024) = 34285

    Прерывания таймеров в Arduino

    Прерывания таймеров являются видом программных прерываний. В Arduino присутствуют следующие виды прерываний таймеров.

    Прерывания переполнения таймера (Timer Overflow Interrupt)

    Это прерывание происходит всегда, когда значение счетчика достигает его максимального значения, например, для 16-битного счетчика это 65535. Соответственно, процедура обработки (обслуживания) прерывания (ISR) вызывается когда бит прерывания переполнения таймера установлен (enabled) в TOIEx присутствующем в регистре масок прерываний TIMSKx.

    ISR Format:

    Output Compare Register (OCRnA/B) – регистр сравнения выхода

    Процедура обработки прерывания сравнения выхода (Output Compare Match Interrupt) вызывается при вызове функции TIMERx_COMPy_vect если установлен бит/флаг OCFxy в регистре TIFRx. Эта процедура обработки прерывания (ISR) становится доступной при помощи установки бита OCIExy, присутствующем в регистре маски прерываний TIMSKx.

    Захват входа таймера (Timer Input Capture)

    Процедура обработки этого прерывания вызывается если установлен бит/флаг ICFx в регистре флагов прерываний таймера (TIFRx — Timer Interrupt Flag Register). Эта процедура обработки прерываний становится доступной при установке бита ICIEx в регистре маски прерываний TIMSKx.

    Необходимые компоненты

    1. Плата Arduino Uno (купить на AliExpress).
    2. ЖК дисплей 16х2 (купить на AliExpress).
    3. Резисторы 10 кОм (2 шт.) и 2,2 кОм (купить на AliExpress).
    4. Светодиод (любого цвета) (купить на AliExpress).
    5. Кнопка (2 шт.).
    6. Источник питания с напряжением 5 В.

    Работа схемы

    Схема устройства представлена на следующем рисунке.

    Схема конструкции для изучения таймеров Arduino

    Необходимые соединения между платой Arduino Uno и ЖК дисплеем 16х2 представлены в следующей таблице:

    ЖК дисплей 16х2 Arduino UNO
    VSS GND
    VDD +5V
    V0 к среднему контакту потенциометра для контроля контрастности ЖК дисплея
    RS 8
    RW GND
    E 9
    D4 10
    D5 11
    D6 12
    D7 13
    A +5V
    K GND

    Две кнопки через подтягивающие резисторы 10 кОм подключены к контактам 2 и 4 платы Arduino Uno, а светодиод подключен к контакту 7 Arduino через резистор 2,2 кОм.

    Собранная схема устройства будет выглядеть примерно следующим образом:

    Внешний вид собранной схемы устройства

    Программирование таймеров в плате Arduino UNO

    В этом проекте мы будем использовать прерывание переполнения таймера (Timer Overflow Interrupt) и использовать его для включения и выключения светодиода на определенные интервалы времени при помощи установки заранее определяемого значения (preloader value) регистра TCNT1 с помощью кнопок. Полный код программы будет приведен в конце статьи, здесь же рассмотрим его основные части.

    Для отображения заранее определяемого значения используется ЖК дисплей, поэтому необходимо подключить библиотеку для работы с ним.

    Анод светодиода подключен к контакту 7 платы Arduino, поэтому определим (инициализируем) его как ledPin.

    #define ledPin 7

    Затем сообщим плате Arduino к каким ее контактам подключен ЖК дисплей.

    Установим заранее определенное значение (preloader value) равное 3035 – это будет соответствовать интервалу времени в 4 секунды. Формула для расчета этого значения приведена выше в статье.

    float value = 3035;

    Затем в функции void setup() установим режим работы ЖК дисплея 16х2 и высветим приветственное сообщение на нем на несколько секунд.

    lcd.begin(16,2);
    lcd.setCursor(0,0);
    lcd.print(«ARDUINO TIMERS»);
    delay(2000);
    lcd.clear();

    Затем контакт, к которому подключен светодиод, установим в режим вывода данных, а контакты, к которым подключены кнопки – в режим ввода данных.

    pinMode(ledPin, OUTPUT);
    pinMode(2,INPUT);
    pinMode(4,INPUT);

    После этого отключим все прерывания.

    Далее инициализируем Timer1.

    TCCR1A = 0;
    TCCR1B = 0;

    Загрузим заранее определенное значение (3035) в TCNT1.

    Затем установим коэффициент деления предделителя равный 1024 при помощи конфигурирования битов CS в регистре TCCR1B.

    Разрешим вызов процедуры обработки прерывания переполнения счетчика с помощью установки соответствующего бита в регистре маски прерываний.

    TIMSK1 |= (1 << TOIE1);

    Теперь разрешим все прерывания.

    Теперь процедура обработки прерывания переполнения счетчика будет отвечать за включение и выключение светодиода с помощью функции digitalWrite . Состояние светодиода будет меняться каждый раз когда будет происходить прерывание переполнения счетчика.

    ISR(TIMER1_OVF_vect)
    <
    TCNT1 = value;
    digitalWrite(ledPin, digitalRead(ledPin) ^ 1);
    >

    В функции void loop() предварительно загружаемое значение увеличивается и уменьшается на 10 (инкрементируется и декрементируется) при помощи кнопок в схеме. Также это значение отображается на экране ЖК дисплея 16х2.

    if(digitalRead(2) == HIGH)
    <
    value = value+10; //увеличиваем preload value
    >
    if(digitalRead(4)== HIGH)
    <
    value = value-10; //уменьшаем preload value
    >
    lcd.setCursor(0,0);
    lcd.print(value);
    >

    Исходный код программы

    Далее приведен полный текст программы. Работа нашего проекта продемонстрирована на видео, приведенном в конце статьи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *