Как найти направление тока
Перейти к содержимому

Как найти направление тока

  • автор:

 

Как определить направление тока: правило левой и правой руки в физике

Для запоминания различных правил и законов в естественных и точных науках придумано множество мнемонических методов. Среди наиболее известных приемов– закон правой руки или тождественное ему правило буравчика.

Общая формулировка правила буравчика

Изначально правило правой руки появилось в математике. Оно применяется, чтобы определить направление результата векторного произведения двух векторов. В отличие от скалярного, результатом которого является число, векторное произведение в итоге дает вектор, который имеет не только величину, но и направление.

Пусть имеется два вектора Как определить направление тока: правило левой и правой руки в физике, для которых надо найти векторное произведение Как определить направление тока: правило левой и правой руки в физике. Длина вектора равна произведению длин каждого на синус между ними. А направление выбирается из двух условий:

  • итоговый вектор ортогонален обоим исходным;
  • три вектора образуют правую тройку – если смотреть с конца вектора Как определить направление тока: правило левой и правой руки в физике, то кратчайший поворот от Как определить направление тока: правило левой и правой руки в физикедолжен происходить по часовой стрелке.

Это сложно запомнить, и не всегда просто представить абстрактно, поэтому приходится прибегать к простому мнемоническому приему. Если на правой руке отогнуть большой палец, а указательный и безымянный расположить в одной плоскости по направлению перемножаемых векторов (исходящих из одной точки) так, чтобы указательный палец соответствовал первому вектору, а безымянный – второму, то отогнутый большой палец укажет направление результирующего вектора.

Как определить направление тока: правило левой и правой руки в физике

Другая формулировка правила правой руки – в виде правила буравчика. Если перемножаемые векторы нарисовать исходящими из одной точки и вращать первый вектор по кратчайшему направлению в сторону второго, то винт или буравчик, который вращается так же, как и первый вектор, будет двигаться (завинчиваясь) по направлению результирующего вектора.

Как и в первом случае, очевидно, что перемене мест множителей меняется направление итогового вектора. На первый взгляд, эта формулировка менее очевидна и более сложна. Но далее будет видно, что некоторые законы лучше моделировать именно так.

Как определить направление тока: правило левой и правой руки в физике

Векторное произведение применяется во многих законах физики и техники, поэтому правило правой руки можно использовать и для запоминания принципов, применительно к величинам, входящих в соответствующие формулы.

Правило правой руки

В электродинамике правило правой руки может быть применено для определения взаимного направления тока и магнитной индукции. Это направление определяется законом Био-Савара.

Для одиночного провода

Этот закон, в частности, гласит, что магнитное поле в точке пространства, создаваемое отрезком проводника, по которому протекает электрический ток, направлено перпендикулярно по отношению и к току, и к направлению на проводник. В векторной форме это можно записать, как Как определить направление тока: правило левой и правой руки в физике, где:

  • Как определить направление тока: правило левой и правой руки в физике— магнитная индукция, созданная элементом тока — вектором, направленным по направлению тока;
  • Как определить направление тока: правило левой и правой руки в физике— векторное произведение элемента тока на радиус-вектор до точки, в которой определяется магнитная индукция.

Таким образом, направление вектора магнитной индукции определяется векторным произведением элемента тока и радиус-вектора, а, следовательно, для определения этого направления можно использовать правило правой руки.

В данном случае оно применяется в следующей формулировке:

Если указательный палец совпадает с направлением тока в проводнике, а средний палец указывает на точку, в которой вычисляется индукция, то отогнутый большой палец укажет направление линий магнитной индукции.

Отсчет векторов на правой руке можно начать и с другого пальца. Например, если за вектор Как определить направление тока: правило левой и правой руки в физикепринять большой палец, а за Как определить направление тока: правило левой и правой руки в физике– указательный, то отогнутый на 90 градусов безымянный совпадет с направлением результирующего вектора. Это можно использовать для нахождения одного из множителей, если известен результат.

Как определить направление тока: правило левой и правой руки в физике

Например, если известно направление линий магнитной индукции, а требуется определить направление тока, то надо поставить ладонь правой руки так, чтобы линии вектора индукции входили в поверхность ладони. Тогда отогнутый большой палец покажет направление тока.

Как определить направление тока: правило левой и правой руки в физике

В этом случае удобно применять и правило буравчика. Если вворачивать буравчик по направлению тока, то вращение рукоятки укажет направление магнитных силовых линий. И наоборот – если известно, как направлены силовые линии магнитного поля вокруг проводника, надо вращать буравчик (или правый винт) в этом направлении. Тогда буравчик будет двигаться в направлении движения тока.

Как определить направление тока: правило левой и правой руки в физике

Для соленоида

Правило буравчика можно применить и для определения направления индукции магнитного поля, созданного круговым током. Если вращать буравчик по направлению движения тока контура, поступательное движение покажет направление вектора магнитной индукции. А если мысленно взять круговой проводник с током в правую руку так, чтобы большой палец был направлен по направлению тока, то остальные четыре пальца будут указывать направление вектора индукции магнитного поля.

Как определить направление тока: правило левой и правой руки в физике

Катушку с током (соленоид), можно рассматривать, как несколько последовательно соединенных контуров с круговым током. При протекании тока по ее виткам катушки, вокруг нее будет создаваться магнитное поле. Направление линий поля можно определить по одной из разновидностей правила правой руки:

Если обхватить катушку с током так, чтобы направление четырех пальцев совпало с направлением тока в витках, то отставленный большой палец укажет направление линий магнитной индукции.

В этом случае также говорят, что направление большого пальца указывает на северный полюс электромагнита, которым становится катушка (и ее сердечник, при наличии) во время прохождения по виткам электрического тока.

Как определить направление тока: правило левой и правой руки в физике

Правило левой руки

На проводник с током действует сила Ампера. Для определения направления действия силы Ампера можно пользоваться законом левой (но не правой!) руки. Если раскрытую ладонь расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца указывали направление тока, то отставленный большой палец укажет направление действия силы Ампера.

Как определить направление тока: правило левой и правой руки в физике

Надо помнить, что за направление тока принято направление движения положительного заряда (противоположно движению электронов).

Сила Ампера является следствием воздействия силы Лоренца на множество носителей отрицательного заряда, движущихся в проводнике. В состав формулы для силы Лоренца, определяющей воздействие магнитного поля на движущуюся заряженную частицу, входит векторное произведение:

Как определить направление тока: правило левой и правой руки в физике, где Как определить направление тока: правило левой и правой руки в физике– векторное произведение скорости частицы на вектор индукции магнитного поля. Но в электротехнике под заряженной частицей в большинстве случаев подразумевается электрон, а он заряжен отрицательно. Следовательно, направление силы меняется на противоположное, и в этом случае применяется закон левой руки.

Чтобы определить направление, с которой сила поля действует на электрон, надо расположить ладонь левой руки таким образом, чтобы силовые линии магнитного поля входили в тыльную сторону ладони (для положительных частиц – в ладонь), а четыре пальца вытянуть по направлению движения частиц. Тогда отогнутый большой палец покажет направление действия силы.

Как определить направление тока: правило левой и правой руки в физике

Для наглядности рекомендуем краткое и простое видео.

Применение законов буравчика в электротехнике

Правила левой и правой руки (включая формулировку с буравчиком) применяются в технике там, где надо определить силу, действующую на проводник, летящую частицу, направление действия индукционного тока и т.п. Так, в электронно-лучевой трубке (кинескопе) отклоняющая система действует на поток электронов посредством силы Лоренца. Направление отклонения пучка от прямой линии полета определяется направлением линий магнитной индукции, создаваемой катушками отклоняющей системы. Чтобы создать требуемое отклонение, надо создать соответствующее магнитное поле. А его направление определяется направлением тока в катушках отклоняющей системы. Следовательно, при проектировании отклоняющих систем не обойтись без применения рассмотренных выше правил.

Как определить направление тока: правило левой и правой руки в физике

Другое применение силы Лоренца – масс-спектрографы. Эти приборы разделяют носителей заряда по величине этого заряда, путем воздействия на них магнитного поля. Чем больше заряд у частицы, тем больше она отклоняется от прямолинейного движения. При разработке подобных устройств также применяются правила правой и левой руки.

Существует огромное количество и других приборов, использующих в работе силы Ампера и Лоренца, законы электромагнитной индукции и т.п. При разработке таких устройств не обойтись без знаний правил буравчика. Кроме того, эти правила необходимо знать для решения задач по физике в рамках среднего и высшего образования.

Правило правой руки и буравчика можно применять не только в электродинамике. Векторное произведение используется во многих правилах физики, включая законы механики. Запомнив принцип, можно использовать этот мнемонический прием и в других областях физики и техники.

От чего зависит прямое и обратное направление движения тока

Электрическим током в физике называют упорядоченное движение заряженных частиц.

Ток может возникать в различных средах: металлах, жидкостях, газах. Приведем условия, при которых движение зарядов можно считать током:

  1. Согласно определению, ток — это перенос электрического заряда из одной точки в другую. Это можно сравнить с течением воды по трубе или течением реки, когда масса воды перемещается из одного места в другое. Хаотичное движение заряженных частиц (например, тепловое) нельзя считать электрическим током.
  2. Любое тело состоит из множества заряженных частиц (протонов, электронов, атомных ядер и пр.). Однако при движении тела в пространстве мы не говорим о существовании тока, поскольку тело нейтрально (не имеет заряда). Электрический ток возникает при перемещении избыточного положительного или отрицательного заряда.

В каком направлении течет ток, обозначение

Считают, что направление тока совпадает с направлением движения положительного заряда, от «плюса» к «минусу».

Введем понятие вектора плотности тока J → :

где n — количество свободных заряженных частиц;

q — электрический заряд, Кл;

v → — скорость движения заряда, м/с.

Если ток вызван перемещением положительного заряда, вектор J → является сонаправленным вектору v → , если отрицательного — направлен противоположно ему.

При обозначении на электрических схемах положительная клемма источника имеет вид длинной черты, отрицательная — короткой. Направление тока указывают стрелкой от положительного полюса.

Добавим в цепь еще одно устройство – полупроводник или полупроводниковый диод с p-n переходом и рассмотрим два способа его подключения:

1. Внешнее напряжение подведено к полупроводнику так, что p-область получает положительный потенциал. Тогда сила тока электронов i э будет значительно меньше силы тока дырок i д — основных носителей заряда. Результирующая сила тока направлена от p-области к n-области и определяется по формуле.

i = i д — i э . Такое направление называется прямым.

2. Потенциал в p-области становится отрицательным. При этом сила тока дырок i д будет практически равна нулю, через полупроводник будет проходить незначительное количество электронов. Такое направление называется обратным.

Как определяется в проводе, способы

Наличие тока в проводнике нельзя определить визуально. Способы его обнаружения основываются на его воздействии на окружающую среду:

1. Тепловое воздействие. Если ток протекает через провод, то последний будет нагреваться. Это свойство реализуется в лампах накаливания (вольфрамовая нить накаляется и светится при пропускании через нее тока), утюгах и электроплитах. Такой тип воздействия описывается законом Джоуля-Ленца:

Q = I 2 · R · ∆ t , где Q — количество теплоты, Дж; I — сила тока, А; R — сопротивление, О м ; ∆ t — время прохождения тока, с.

2. Химическое воздействие. Это свойство часто применяется в различных растворах. При пропускании тока через подкисленную воду она распадается на составляющие: водород и кислород. Если пропустить ток через раствор медного купороса, в нем выделятся положительные ионы меди. На химическом воздействии основан электролиз, используемый в гальванопластике, для получения алюминия и др.

3. Магнитное воздействие основано на том, что движущиеся заряды создают вокруг себя магнитное поле. Отметим, что это утверждение справедливо и в случае постоянного тока, и в случае переменного.

Обнаружить ток можно, поместив рядом два провода. При прохождении тока проводники начнут либо притягиваться друг к другу, либо отталкиваться. Если векторы плотности тока являются сонаправленными, провода начнут сближаться, если противоположно направлены — отталкиваться.

На явлении магнетизма основана работа электромагнитов. Простейший электромагнит представляет собой катушку, сердечник которой выполнен из ферромагнитного материала, а по обмотке протекает электрический ток. В результате возникает магнитное поле.

Как найти направление тока, формула, правило буравчика

Магнитное поле, возникающее при протекании электрического тока в проводнике, характеризуется магнитной индукцией B → .

Величина индукции, появившейся под действием постоянного электрического тока, определяется законом Био-Савара-Лапласа. Формула в векторной форме для элемента ∆ l проводника с током I имеет вид:

Δ B → = μ 0 4 π · I · Δ l → × r → r 3 ,

где Δ B → — индукция, создаваемая в некоторой точке, Тл;

r → — радиус-вектор, проведенный от элемента Δl к точке, в которой необходимо найти индукцию, м;

μ 0 — магнитная постоянная, равная 4 π · 10 — 7 Г н / м .

Запись закона в скалярной форме будет зависеть от формы проводника (прямой провод, соленоид и т.д.).

Направления составляющих векторного произведения можно определить по правилу буравчика.

Правило буравчика для элемента проводника. Направление вектора B в заданной точке будет совпадать с поступательным движением ручки буравчика, если вращать буравчик в сторону наименьшего угла от вектора Δ l → к вектору r → .

Из правила буравчика можно сделать вывод о том, что вектор B всегда лежит в плоскости, перпендикулярной направлению тока.

При протекании тока по проводнику линии индукции B охватывают проводник, сформулируем правило буравчика и правило правой руки для этого случая.

Правило буравчика для проводника с током. Буравчик направить так, чтобы при совершении оборота направление вращения совпадало с направлением линий магнитного поля. Направление тока в этом случае будет совпадать с поступательным движением буравчика.

Правило правой руки. Ладонью правой руки охватывают проводник так, чтобы четыре пальца совпадали с силовыми линиями магнитного поля. Отогнутый большой палец укажет направление движения зарядов.

В соленоиде направление линий магнитного поля и тока также определяются по правилу буравчика: если ток в витках направлен по часовой стрелке, вектор В направлен вниз, если против — вверх.

Примеры решения задач

Имеется источник, полупроводниковый диод и лампа накаливания. Собрать электрическую схему так, чтобы:

  • при включении источника лампа загорелась;
  • при включении источника лампа не загоралась.

Для первого вариант необходимо включить диод по прямой схеме. Для этого положительную клемму источника подключаем к аноду, отрицательную — к катоду.

При втором варианте диод подключается по обратной схеме: положительная клемма подключается к катоду, отрицательная — к аноду. Возникающий при этом запирающий ток не дает заряду дойти до лампы.

Определить направление тока в проводе АС и указать полюсы источника, если линии магнитного поля направлены согласно рисунку.

Воспользуемся правилом буравчика. Вращение буравчика будет совпадать с линиями индукции B → . При этом рукоятка буравчика будет перемещаться от точки А к точке С. За направление движения заряда принято направление от «плюса» к «минусу», обозначим клеммы источника в соответствии с направлением тока.

Имеется электрическая цепь, представленная на рисунке. Известно направление линий магнитного поля. Необходимо:

  • указать полюсы источника;
  • определить, по какой ветке пойдет ток при включении источника;
  • предложить способы изменить схему так, чтобы ток протекал по другой ветке.

Сначала по правилу буравчика определим направление тока и обозначим клеммы источника. Теперь посмотрим на подключение диодов. Диод № 1 имеет обратное подключение, следовательно, ток не будет проходить по ветке 1. Диод № 2 подключен по прямой схеме, значит, ток в цепи будет проходить по ветке 2.

Есть два возможных варианта изменить цепь так, чтобы ток проходил по ветке 1. Первый – изменить подключение источника. Тогда диод № 1 будет включен по прямой схеме, а диод № 2 — по обратной. Второй – изменить схему подключения диодов.

По проводнику диаметром 2 см протекает ток 10 А. Определить величину магнитной индукции.

Индукция прямого провода вычисляется следующим образом: B = μ 0 · I 2 π · d . Подставим в выражение известные значения: B = μ 0 · I 2 π · d = 4 π · 10 — 7 · 10 2 π · 0 , 02 = 100 м к Т л .

Куда течет ток и как определить его направление

Чтобы правильно рассчитать параметры конкретной электрической цепи, нужно знать, как определяется направление тока. Это невозможно сделать без понимания природы электрического тока и тех правил, которым он подчиняется.

Схема движения зарядов в цепи

Природа электрического тока

Атомы состоят из ядер и вращающихся вокруг них электронов. У последних заряд отрицательный. Ядро включает в себя частицы, заряженные положительно (протоны), и нейтральные (нейтроны). Обычно атом не имеет заряда, однако если по каким-то причинам электроны покидают орбиту, то он теряет свою нейтральность и становится ионом, заряженным положительно.

Движущиеся электроны создают электрический ток. Он возникает при наличии упорядоченного перемещения зарядов. Сила тока в цепи выражается количеством электронов, переместившихся через фиксированное поперечное сечение проводника за единицу времени. Эта величина обозначается символом «I». Он применяется уже много десятилетий. Такое обозначение является традиционным.

Понятие электрического тока ввел французский физик Ампер

В радиосхемах обычно рассматривается движение зарядов по проводникам или по полупроводникам. Особенностью металлов считается то, что электроны отрываются от атомов относительно легко. Они движутся под действием электрополя, которое образуется благодаря разности потенциалов на клеммах источника электротока. Определить, каково направление электрического тока можно по правилу Ампера.

Правило Ампера

Виды токов

Сила постоянного тока с течением времени не изменяется. В этом случае после включения заряд перемещается по проводнику с одной и той же скоростью. Поэтому определение направления тока осуществляется по простым правилам.

 

В электротехнике распространено использование переменного тока. В этом случае речь идёт о его циклическом изменении, которое происходит по синусоидальному закону. При этом электрический ток меняет и направление, и величину.

Например, в нашей сети электропитания ток имеет частоту 50 Гц и соответствует амплитуде изменения напряжения 220 В. Но в различных странах используется бытовая электросеть с другими параметрами. При этом направление силы тока будет всегда меняться циклически.

Отличия между переменным и постоянным электротоком

Иногда дополнительно выделяют пульсирующий ток. Он сохраняет свой знак, но периодически меняет абсолютную величину. Также возможно существование электротока, который носит произвольный характер. В таком случае силу и направление тока предсказать невозможно.

Графики различных видов тока

Надо заметить, что в проводниках движение электронов существует всегда. Оно становится направленным под действием электрополя. Однако и при этом движение в значительной степени сохраняет хаотичность. Просто при перемещении электронов возникает преимущественное направление тока. Оно выражено тем сильнее, чем больше прилагаемая разность потенциалов. Определить направление тока в проводнике можно по обычному правилу.

Ток может возникать не только в твёрдых телах, но и в газах или жидкостях. В первом случае атомы привязаны друг к другу, поэтому свободно перемещаться могут только электроны. В газах и жидкостях атомы способны так же свободно двигаться, как и электроны.

Природа тока в различных средах

Как определяется направление электротока

Чтобы узнать, в каком направлении течет ток, нужно составить электрическую цепь. Простейшая схема предусматривает наличие источника тока, нагрузки (это может быть лампа накаливания) и проводов. Если последние правильно соединить, лампочка загорится.

Пример электрической цепи

Фактически наличие тока означает, что электроны перемещаются от отрицательной клеммы батареи через всю цепь к положительной. После попадания внутрь источника тока, благодаря химическим процессам, эти частицы попадут на отрицательную клемму и далее опять пройдут через цепь в определенном ранее направлении.

Физиками принято направление тока условно от отрицательного полюса к положительному. Электроны, переместившиеся к положительному полюсу, начинают вновь двигаться к отрицательному полюсу. Затем они перемещаются по цепи.

Общепринятое направление электротока

Явление электрического тока было открыто до того, как наука смогла его объяснить. В то время не было еще известно о существовании электронов. Поэтому направление движения тока принято случайным образом — от положительной клеммы источника тока к отрицательной. С тех пор в электротехнике сохраняется именно такое правило.

Впервые определение электрического тока дал французский учёный Жан-Мари Ампер. Ученый в своих работах обосновал, какое есть истинное направление электротока. Основанием для его определения послужил довольно простой эксперимент.

Аппарат для электролиза воды

Приведённый на рисунке аппарат заправляется водой. В указанных на схеме местах расположены положительная и отрицательная клеммы источника тока. При пропускании электротока часть молекул воды распадается на кислород и водород. Первый выделяется там, где источник имеет положительный потенциал (на аноде), второй — отрицательный (на катоде).

Рассматривая происходящие процессы, Ампер понял, что за направление тока следует считать то движение зарядов, которое идет от кислородного электрода к водородному. Проще говоря, направление тока определяется движением электронов от плюса к минусу. Этот опыт был проведён в первой половине девятнадцатого века.

Теперь известно, что на самом деле за направление электрического тока принимается перемещение электронов, которое противоположно указанному Ампером. Этот факт был установлен в 1897 году. Но чтобы не вносить множество изменений, ученые принимают решение оставить направление от плюса к минусу и в дальнейшем использовать только его.

Условное и истинное-направление электротока

Нужно подчеркнуть, что указанное противоречие относится лишь к току, проходящему в проводниках. Однако он может существовать в жидкостях и газах. В таких случаях направление движения положительных ионов будет совпадать с тем, которое принимает Ампер.

В большинстве случаев в веществах присутствуют носители зарядов как положительные, так и отрицательные и они могут перемещаться. Их соотношение зависит от конкретного вещества. Например, в проводниках количество перемещающихся электронов намного больше, чем носителей положительных зарядов.

Постоянный электрический ток

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Постоянный электрический ток» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *