Как найти центр эллипса
Перейти к содержимому

Как найти центр эллипса

  • автор:

Определение центра окружности или эллипса по его точкам

Имеется несколько точек на плоскости, как правило от 6 до 8. Я точно знаю, что они лежат на некотором эллипсе или окружности (с некоторой погрешностью). Мне нужны координаты центра окружности/эллипса. Эта задача уже 100500 раз решена и мне совсем не хочется лепить очередной велосипед. Гугление выдало массу обсуждений задачи и к сожалению ни одной строчки кода.

Тыкните плиз пальцем, где я могу скачать код, который решает эту задачу, например методом наименьших квадратов.
Заранее премного благодарен.

  • Вопрос задан более трёх лет назад
  • 16469 просмотров

Оценить 4 комментария

  • Facebook
  • Вконтакте
  • Twitter

мне точность в 1 пиксель хватит выше крыши. К сожалению больше чем примерно 25 точек я достать в любом случае не смогу. В идеале хотелось бы работать с 8 точками. Можно сслыку на статью и код?

P.S. точки довольно таки неплохо распределены по эллипсу/окружности, это должно по идее сильно упростить задачу.

Так в чем же проблема?

Уравнение эллипса известно — Ax 2 + Bxy + Cy 2 + Dx + Ey = 1.
Если выписать его для каждой точки, рассматривая x и y как известные величины, а A,B,C,D,E — как неизвестные, то получится обычная СЛАУ с пятью неизвестными и от 6 до 8 уравнениями.

Если бы координаты точек были заданы точно, это этого было бы достаточно для точного решения. Поскольку точность ограничена — надо найти больше точек и использовать МНК.

Если вы не знаете, как применять МНК к СЛАУ, то проще всего его запомнить в матричной форме:
есть уравнение вида M t = r
его решение методом МНК — это (t = M T M) -1 M T r
осталось реализовать умножение и обращение матриц.

Осталось определить центр эллипса. Для этого запишем уравнение в виде
A(x-x0) 2 + B(x-x0)(y-y0) + C(y-y0) 2 = F
и заметим, что
D = -(2Ax0 + By0),
E = -(2Cy0 + Bx0),
F — 1 = (Ax0 2 + Bx0y0 + Cy0 2
)

Из первых двух уравнений получаем центр, про третье — забываем.

Сложнее обстоит дело с погрешностью — точных формул я не помню, да и что считать несколько непонятно. Возьмите 25 точек, сделайте из них от 10 до 1000 случайных выборок по 12 точек, и решите задачу для этих выборок, после чего можно найти дисперсию распределения центров.

  • Facebook
  • Вконтакте
  • Twitter
  • Facebook
  • Вконтакте
  • Twitter

как вам сказать… Знания лишними не бывают, поэтому если можно, то расскажите.

Но вообще мне надо на java эту проблему решить, а потому мне надо или портировать какой нить код на яву или использовать какую нить библиотеку, которая имеет порт к яве.

Отстойные, но довольно быстрые, способы — через решение систем уравнений влоб. Типа, окружность по трем точкам, эллипс по восьми (?) точкам, перебираем комбинации все/случайным образом и усредняем результат. То, что предлагает mayorovp вторым пунктом. Почему отстойные — устойчивость плохая. Именно так мы делаем у себя — способы действительно отстойные и требуют костылей, но действительно быстрые. Разница между реальным центром и найденным таким способом намного меньше пикселя, но костылей действительно много. Например, отбирая треугольник при поиске окружности по 3-м точкам, нужно, чтобы все три точки были из разных четвертей окружности.
Я не рекомендую — кода много, а экономия оправдывает себя только на железе 20 летней давности, когда нужен околорилтайм. Для эллипса по-моему малореально вообще что-либо нормальное получить.

Универсальный способ — метод наименьших квадратов. То есть заставить компьютер подобрать такие параметры эллипса чтобы разница между эллипсом и нашими точками была минимальной. Лучше критерий сложно придумать — хотя иногда получается не то, что ожидаешь, но это скорее говорит о том, что исходные данные неправильные.

Алгоритм такой:
1. Выбираем подходящее уравнение эллипса.
2. Пишeм целевую функцию (сумма квадратов уравнения для каждой точки исходных данных). По необходимости добавляем к целевой функции дополнительные условия, типа невырождаемости эллипса в гиперболу. Типа, если условие нарушается, устремляем ее в бесконечность.
3. Выбираем минимизатор (градиентный спуск, нормальное уравнение т. д.)
4. Если результаты не устраивают по скорости или качеству, возвращаемся к п. 3 или к п. 1.

По поводу третьего пункта. В России почему-то считается, что МНК — это когда решение идет с помощью нормального уравнения (составляем матрицы и решаем (AtA)^-1*At*x=b без итераций в один присест). Это не так. Минимизировать можно каким угодно способом. Хоть генетическими алгоритмами. Нормальное уравнение хорошо тогда, когда член (AtA)^-1 получается маленькой квадратной матрицей. То есть когда параметров мало, а точек очень много. Систему уравнений для эллипса вообще к виду A*x-b=0 привести служно. Искать соответствующие статьи как это делается мне влом, поэтому я пойду влоб, в качестве минимизатора взяв стандартный матлабовский.

Используя формулы mayorovp.

  • Facebook
  • Вконтакте
  • Twitter

Коллега, попрошу читать мои комментарии более внимательно, не забыв выспаться.

Между прочим, оправдано считается. Если исходное уравнение — вида A*x-b=0, то нормальное уравнение дает оптимальный результат.

Я его к этому виду привел.

Кстати, ваша программа вернет вам случайный результат, поскольку вы взяли ужасную целевую функцию. Она обращается в нуль при A=B=C=F=0 независимо от x0 и y0. Я-то написал такое уравнение, поскольку у меня первые три переменных были уже найденными (константами). А вам надо было, как и мне в первом уравнении, положить F=1.

Понятие эллипса в математике и его свойства

Эллипс — что это такое, понятие в математике и геометрии

Эллипс — фигура, представляющая собой по форме замкнутую кривую линию на плоскости. Она получается путем пересечения плоскости с круговым цилиндром, или же как ортогональное отображение окружности на плоскость в пространстве.

В эллипсе суммарная величина расстояния от любой точки до двух точек F2 и F1 будет равна одному постоянному значению. Эти точки — F1 и F2 — носят названия фокусов эллипса.

F 1 M 1 + F 2 M 1 = F 1 M 2 + F 2 M 2 = A 1 A 2 = c o n s t

∣ F 1 M ∣ + ∣ F 2 M ∣ = 2 × a , причем ∣ F 1 F 2 ∣ < 2 × a

Окружность можно называть партикулярным (особым) вариантом эллипса. Эллипс, как и параболу, и гиперболу, можно назвать квадрикой или же коническим сечением.

Рассмотрим связанные с эллипсом понятия:

  1. Отрезок AB, проходящий через фокусы эллипса (его концы должны лежать на эллипсе), носит название большой оси эллипса. Длина этого элемента — большой оси — равняется 2a в уравнении, приведенном выше.
  2. Малая ось эллипса — отрезок CD, который перпендикулярен большой оси, он проходит через центральную точку большой оси. Концы отрезка должны лежать на эллипсе.
  3. Центр эллипса — точка пересечения малой и большой оси данной замкнутой кривой.
  4. Большая полуось — отрезок, проведенный из центра эллипса к вершине большой оси. Обозначается буквой «a».
  5. Малая полуось — отрезок, проведенный из центра эллипса к вершине малой оси. Обозначается буквой «b».
  6. Фокальные радиусы в точке — расстояния r 1 и r 2 до определенной точки от каждого фокуса эллипса.
  7. Фокальное расстояние — расстояние, равное: c = ∣ F 1 F 2 ∣ 2 .
  8. Эксцентриситет — величина, равная: e = c a = 1 — b 2 a 2 .
  9. Диаметр эллипса — свободно проведенная хорда, проходящая через центр построения. Диаметры (обычно пара), обладающие свойством середины хорд, параллельные первому диаметру, и находящиеся на втором диаметре, называются сопряженными диаметрами. Середины хорд, параллельных второму диаметру, находятся на первом диаметре.
  10. Радиусом называют отрезок, соединяющий в данной точке центр эллипса и точку. Длина радиуса вычисляется по формуле: r = a b b 2 cos 2 γ + a 2 sin 2 γ = b 1 — e 2 cos 2 γ . В данной формуле γ — величина угла между большой полуосью и радиусом.
  11. Фокальный параметр ( p = b 2 a ) — половина длины хорды, проходящей через фокус эллипса, является перпендикулярной большой оси.
  12. Коэффициент сжатия, или же эллиптичность — отношение длины большой полуоси к длине малой полуоси. Вычисляется по формуле: k = b a . Величина, равная ( 1 — k ) = a — b a , будет носить название «сжатие эллипса». Следует помнить, что для окружности коэффициент сжатия равен единице, а сжатие равно нулю. Эксцентриситет и коэффициент сжатия связаны отношениями равными: k 2 = 1 — e 2 .
  13. Директриса — прямая, которая существует для каждого фокуса эллипса. При этом соотношение расстояния от свободно расположенной точки эллипса до фокуса этой замкнутой кривой к расстоянию от данной точки до определенной прямой будет равно эксцентриситету эллипса. Полный эллипс находится на той же стороне от такой же прямой, что и его фокус. Уравнения для директрис эллипса в классическом виде пишутся как x = ± p e ( 1 — e 2 ) для каждого фокуса ( ± p e 1 — e 2 , 0 ) . Расстояние от фокуса до директрисы будет вычисляться по соотношению p e

Теорема директрисы: Для того, чтобы определенная точка находилась на границе линии замкнутой кривой, необходимо, чтобы соотношение расстояния до фокуса к расстоянию до соответствующей директрисы было равно e.

Эллиптическая функция — функция в двух направлениях, которая в рамках метода комплексного анализа, задана на комплексной плоскости.

Основные элементы и свойства фигуры

Рассмотрим элементы эллипса. Взгляните на чертеж:

F1 и F2 выступают в роли фокусов эллипса. Осями данной замкнутой кривой будут A1A2 =2a (как большая ось, проходящая сквозь фокусы замкнутой кривой), а B1B2=2b (как малая ось, перпендикулярная второй, большой оси фигуры, проходит через ее центр). Здесь «a» является большой полуосью, «b» является малой полуосью, «O» является центром (то есть точкой пересечения малой оси и большой оси).

Вершинами эллипса будут точки A1, и A2, и B1, и B2. Это точки пересечения большой осью и малой осью эллипса. Диаметр замкнутой кривой — отрезок, соединяющий две точки эллипса, а также проходящий через центр фигуры.

Фокальное расстояние, которое обозначается буквой «c», является половиной длины отрезка, соединяющего фокусы эллипса.

Эксцентриситет замкнутой кривой, который обозначается буквой «e», показывает степень «сплющенности» (то есть отклонения от окружности). Он определяется соотношением фокального расстояние (буква «c») к большой полуоси «a». В случае эллипса эксцентриситет будет таким: 0<e<1, для круга e=0, для параболы e=1, а для гиперболы: e>1.

Фокальные радиусы в точке — расстояния r 1 и r 2 до определенной точки от каждого фокуса эллипса.

Радиус эллипса — отрезок, соединяющий центр, который обозначается буквой «O» с точкой на самом эллипсе.

r = a b b 2 cos 2 γ + a 2 sin 2 γ = b 1 — e 2 cos 2 γ .

В данной формуле γ — величина угла между большой полуосью и радиусом (A1A2), e — эксцентриситет.

Фокальный параметр — отрезок, перпендикулярный большой полуоси, а также выходящий за фокус эллипса. Вычисляется по формуле: p = b 2 a

Коэффициент сжатия или же эллиптичность, обозначаемая буквой «k», является отношением длины малой полуоси к большой полуоси.

Малая полуось всегда будет меньше, чем большая полуось замкнутой кривой. Получается, что k<1. Для круга будет верно равенство k=1.

В данном уравнении величина «e» — эксцентриситет.

Сжатие эллипса (то есть 1 — k ) — показатель, который равен разности между эллиптичностью и единицей.

Директриса эллипса — пара прямых, которые перпендикулярны фокальной оси замкнутой прямой, пересекающей расстояние a*e от центра замкнутой прямой. Расстояние до директрисы от фокуса будет равно p*e.

Рассмотрим также основные свойства эллипса:

  1. Угол к эллипсу между касательной и фокальным радиусом r 1 будет равен величине угла между фокальным радиусом r 2 и касательной.
  2. Равенство касательной к замкнутой кривой в точке M : 1 = x x M a 2 + y y M b 2
  3. В случае, если замкнутая прямая пересекается парой параллельных прямых, то отрезок, соединяющий середины отрезков, образованных при пересечении эллипса и прямых, всегда будет пересекать центр замкнутой кривой.

Данное свойство позволяет построить центр эллипса при помощи циркуля и линейки.

  1. Эволюта замкнутой кривой — астероида, которая растянута по короткой оси.
  2. В случае, если можно вписать эллипс с фокусами F1 и F2 в треугольник ABC, то возможно выполнить данное соотношение:

1 = F 1 A × F 2 C A × A B + F 1 B × F 2 B A B × B C + F 1 C × F 1 C B C × C A

Составление уравнения эллипса

Базовое уравнение замкнутой кривой.

Это уравнение, описывающее эллипс в декартовой системе координат. В случае, если центр замкнутой кривой (обозначается буквой «O») — в начале системы координат, а на абсциссе находится большая ось, то замкнутая кривая будет описываться следующим уравнением:

1 = x 2 a 2 + x 2 b 2

В случае, если центр эллипса смещается в точку с координатами x 0 и y 0 , то уравнение примет следующий вид:

1 = ( x — x 0 ) 2 a 2 + ( y — y 0 ) 2 b 2

Параметрическое уравнение будет выглядеть следующим образом:

Как посчитать площадь всего эллипса и сегмента

Рассмотрим формулу для вычисления площади всего эллипса:

Рассмотрим формулу для вычисления площади сегмента эллипса. Это формула площади сегмента, который лежит на левой стороны от хорды с координатами (x, y), а также (x, -y).

S = π a b 2 — b a ( x a 2 — x 2 + a 2 × arcsin x a )

Формула для вычисления периметра и длины дуги

Рассмотрим формулу для вычисления периметра замкнутой кривой.

Важно запомнить, что точную формулу для периметра L найти крайне тяжело. Ниже приведена формула, с помощью которой можно приблизительно рассчитать длину периметра. Максимальной погрешностью данной формулы можно считать примерно 0,63 %.

L ≈ 4 π a b + ( a — b ) 2 a + b

Рассмотрим формулу для вычисления длины дуги замкнутой кривой:

  • Параметрическое уравнение для вычисления длины дуги замкнутой кривой через большую полуось a, а также малую полуось b:

ℓ = ∫ t 1 t 2 a 2 sin 2 t + b 2 cos 2 t d t .

  • Параметрическое уравнение для вычисления длины дуги замкнутой кривой с помощью большой полуоси a, а также эксцентриситета, который обозначается буквой e:

ℓ = ∫ t 1 t 2 1 — e 2 cos 2 t d t , e < 1 .

Как построить эллипс по уравнению, примеры

Попробуем построить эллипс по уравнению x 2 16 + y 2 7 = 1

Сначала мы должны привести данное уравнение к привычному виду: x 2 4 2 + y 2 ( 7 ) 2 = 1

Определяем вершины эллипса. Они находятся в точках A1(a; 0), A2 (-a; 0), B1 (0; b), B2 (0; -b). Получаем, что A 1 ( 4 ; 0 ) , A 2 ( — 4 ; 0 ) , B 1 ( 0 ; 7 ) , B 2 ( 0 ; — 7 )

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка. Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической, если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Далее под словом «линия» по умолчанию будет подразумеваться алгебраическая линия на плоскости

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат, поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой»), причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой, которая представляет собой линию первого порядка.

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Далее из полученных чисел выбирается максимальное значение, в данном случае единица, – это и есть порядок линии.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка, и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат.

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду.

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой, во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола.

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Построить эллипс, заданный уравнением

Решение: сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

Каноническое расположение эллипса

В данном случае :

Отрезок называют большой осью эллипса;
отрезокмалой осью;
число называют большой полуосью эллипса;
числомалой полуосью.
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы. И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат. И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Построение эллипса алгебраическим методом с помощью дополнительных точек

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:

Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Иллюстрация определения эллипса

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса.

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат.

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на… смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – частный случай эллипса

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю.

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем, интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Поворот эллипса на 90 градусов

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Как быть, если такое чудо-яйцо всё-таки встретилось на жизненном пути? В том случае если вам предложено построить эллипс, то, наверное, лучше построить его в нестандартном виде. С вершинами и дополнительными точками, думаю, трудностей не возникнет. Но если вам предложено найти фокусы, эксцентриситет и т.д., то настоятельно рекомендую начать (или продолжить после чертежа) решение так:

«Повернём эллипс на 90 градусов и перепишем его уравнение в каноническом виде: » – дальше по обычной схеме.

! Примечание: в теории принято поворачивать не саму фигуру, а оси! И если от вас требуется именно ПРИВЕСТИ уравнение к каноническому виду, то решение, строго говоря, следует оформить иначе: «Перейдём к новой прямоугольной системе координат , повернув координатные оси на 90 градусов против часовой стрелки, и запишем уравнение эллипса в каноническом виде: ».

Впрочем, эрудиты могут встать на скользкую дорожку путаницы, модифицировав все расчёты с учётом поворота. Но всё равно не советую. Потому что ребячество. Ведь эллипс можно повернуть и на другой угол =) Об этом мы ещё поговорим позже.

В практических задачах гораздо чаще встречается параллельный перенос эллипса:

Уравнение задаёт эллипс с большой полуосью «а», малой полуосью «бэ» и центром симметрии в точке .

Параллельный перенос эллипса

Изобразим на чертеже эллипс . Согласно формуле: , то есть наш подопытный эллипс «переехал» в точку :

Значения остались прежними, а вот фокусы, разумеется, мигрировали, и формулы их координат нужно модифицировать поправками на соответствующие сдвиги:

Здесь всё обходится значительно проще, чем при повороте, и если по условию не нужно приводить уравнение к каноническому виду, то лично я предпочту оставить его в виде . Что делать, если нужно приводить? «Чайникам» в большинстве случаев простят фразу: «Осуществим параллельный перенос эллипса в начало координат и перепишем уравнение в каноническом виде: ». Но академический подход предполагает параллельный перенос не самой фигуры, а системы координат! Поэтому людям, изучающим высшую математику по профилю и/или углублённо, гораздо лучше завернуть примерно следующее: «С помощью параллельного переноса исходной системы координат перейдём к новой прямоугольной системе координат с началом в точке и запишем уравнение эллипса в каноническом виде ».

На самом деле упрощенная версия формулы нам знакома ещё со школьных времён:

Уравнение задаёт окружность радиуса с центром в точке .

Параллельный перенос окружности

Освежая ностальгические воспоминания, изобразим на чертеже окружность, заданную уравнением :

В исследовательских целях приведём наше уравнение к общему виду, выполнив возведение в квадрат и приведение подобных слагаемых:

– как правило, в таком обличье оно и встречается в природе.

Таким образом, в практических задачах часто предварительно нужно выполнить обратное действие – выделить полные квадраты. Данный приём подробно разобран на уроках о геометрических преобразованиях графиков и интегрировании дробей. Хотя следующий простой пример не должен вызвать у вас затруднений даже без отработки данного метода:

Построить график линии, заданной уравнением

Решение и чертёж в конце урока.

На практике эллипс (как и другие линии) может быть одновременно повёрнут на любой угол относительно своего канонического положения и перенесен в любую точку, отличную от начала координат. В таком случае решается типовая задача приведения линии 2-го порядка к каноническому виду, к которой я потихоньку начал вас готовить уже сегодня.

Ну а пока самое время перейти ко второй части лекции, где жертвами станут гипербола и парабола.

Решения и ответы:

Найденное каноническое уравнение эллипса и чертёж линии

Пример 2: Решение: поскольку фокусы канонически расположенного эллипса имеют координаты , то расстояние от каждого из фокусов до начала координат равно: .
По условию известно значение , из соотношения находим:

Запишем каноническое уравнение эллипса:

Вершины эллипса расположены в точках .
Найдём дополнительные точки:

Выполним чертёж:

Вычислим эксцентриситет:

Пример 3: Решение: выделим полный квадрат:

– окружность радиуса с центром в точке .
Выполним чертёж:
Построение окружности после выделения полного квадрата

Автор: Емелин Александр

(Переход на главную страницу)

Contented.ru – онлайн школа дизайна

SkillFactory – получи востребованную IT профессию!

Уравнение эллипса как найти центр

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Эллипс — определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

  • т.е. точками пересечения эллипса с осью абсцисс будут точки
  • т.е. точками пересечения эллипса с осью ординат будут точки (Рис. 30).

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
\frac >>+\frac > >=1\label
$$
при условии \(a \geq b > 0\).

Из уравнения \eqref следует, что для всех точек эллипса \(|x| \leq a\) и \(|y| \leq b\). Значит, эллипс лежит в прямоугольнике со сторонами \(2a\) и \(2b\).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты \((a, 0)\), \((-a, 0)\), \((0, b)\) и \((0, -b)\), называются вершинами эллипса. Числа \(a\) и \(b\) называются соответственно большой и малой полуосями эллипса.

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты \((x, y)\) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты \((-x, y)\), \((x, -y)\) и \((-x, -y)\) точек \(M_ \), \(M_ \) и \(M_ \) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса \(a\) с центром в центре эллипса: \(x^ +y^ =a^ \). При каждом \(x\) таком, что \(|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении \(b/a\).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки \(F_ \) и \(F_ \) с координатами \((c, 0)\) и \((-c, 0)\) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности \(c=0\), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что \(\varepsilon Утверждение 2.

Расстояние от произвольной точки \(M(x, y)\), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы \(x\):
$$
r_ =|F_ M|=a-\varepsilon x,\ r_ =|F_ M|=a+\varepsilon x.\label
$$

Очевидно, что \(r_ ^ =(x-c)^ +y^ \). Подставим сюда выражение для \(y^ \), найденное из уравнения эллипса. Мы получим
$$
r_ ^ =x^ -2cx+c^ +b^ -\frac x^ >>.\nonumber
$$

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса \(2a\).

Необходимость. Если мы сложим равенства \eqref почленно, то увидим, что
$$
r_ +r_ =2a.\label
$$
Достаточность. Пусть для точки \(M(x, y)\) выполнено условие \eqref , то есть
$$
\sqrt +y^ >=2a-\sqrt +y^ >.\nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^ =a\sqrt +y^ >.\label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение \eqref . Мы придем к \(b^ x^ +a^ y^ =a^ b^ \), равносильному уравнению эллипса \eqref .

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса \(\varepsilon\).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть \(M_ (x_ , y_ )\) — точка на эллипсе и \(y_ \neq 0\). Через \(M_ \) проходит график некоторой функции \(y=f(x)\), который целиком лежит на эллипсе. (Для \(y_ > 0\) это график \(f_ (x)=b\sqrt /a^ >\), для \(y_ Утверждение 5.

Касательная к эллипсу в точке \(M_ (x_ , y_ )\) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *