Семиугольник, виды, свойства и формулы
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник, выпуклый и невыпуклый семиугольник:
Семиугольник – это многоугольник с семью углами.
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник может быть выпуклым и невыпуклым.
Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.
Соответственно выпуклый семиугольник – это семиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Звёздчатый семиугольник – семиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого семиугольника могут пересекаться между собой.
Рис. 1. Выпуклый семиугольник
Рис. 2. Невыпуклый семиугольник
Сумма внутренних углов любого выпуклого семиугольника равна 900°.
Правильный семиугольник (понятие и определение):
Правильный семиугольник – это правильный многоугольник с семью сторонами.
В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.
Правильный семиугольник – это семиугольник, у которого все стороны равны, а все внутренние углы равны 128 4/7° ≈ 128,571°.
Рис. 3. Правильный семиугольник
Правильный семиугольник имеет 7 сторон, 7 углов и 7 вершин.
Углы правильного семиугольника образуют семь равнобедренных треугольников .
Правильный семиугольник невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).
Свойства правильного семиугольника:
1. Все стороны правильного семиугольника равны между собой.
2. Все углы равны между собой и составляют 128 4/7° ≈ 128,571°.
Рис. 4. Правильный семиугольник
3. Сумма внутренних углов любого правильного семиугольника равна 900°.
4. Все биссектрисы углов между сторонами равны и проходят через центр правильного семиугольника O.
Рис. 5. Правильный семиугольник
5. Количество диагоналей правильного семиугольника равно 14.
Рис. 6. Правильный семиугольник
6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.
Рис. 7. Правильный семиугольник
Формулы правильного семиугольника:
Пусть a – сторона семиугольника, r – радиус окружности, вписанной в семиугольник, R – радиус описанной окружности семиугольника, P – периметр семиугольника, S – площадь семиугольника.
Формулы стороны правильного семиугольника:
Формулы периметра правильного семиугольника:
Формулы площади правильного семиугольника:
Формулы радиуса окружности, вписанной в правильный семиугольник:
Семиугольник в природе, технике и культуре:
В некоторых странах, например, в Великобритании, некоторые монеты имеют правильную криволинейную семиугольную форму.
Некоторые виды кактусовых имеют форму звездчатого семиугольника.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
- Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 770)
- Экономика Второй индустриализации России (104 769)
- Этилен (этен), получение, свойства, химические реакции (36 765)
- Программа искусственного интеллекта ЭЛИС (31 829)
- Крахмал, свойства, получение и применение (30 615)
- Природный газ, свойства, химический состав, добыча и применение (30 273)
- Метан, получение, свойства, химические реакции (29 961)
- Целлюлоза, свойства, получение и применение (29 092)
- Пропилен (пропен), получение, свойства, химические реакции (28 190)
- Прямоугольный треугольник, свойства, признаки и формулы (27 244)
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Формула расчета периметра многоугольника
Периметр многоугольника в геометрии — это результат сложения длин всех его сторон.
Свойства многоугольника
- Все стороны прямые.
- Стороны не пересекаются (кроме звездчатых).
- Двумерная фигура.
- Сумма внешних углов всегда равна 360º.
- Сумма внутренних углов равна \(\frac
2\) (для правильных фигур).
Как вычислить периметр правильного многоугольника
Свойства правильного многоугольника
- Все стороны равны.
- Все углы равны.
- Центр равно удален ото всех вершин и сторон.
- Сумма всех углов равна 180º×(n−2).
- Все внешние углы при сложении их градусных мер дадут 360º.
- Все биссектрисы углов между сторонами равны и пересекают центр фигуры.
- Возможно вписать окружность и описать круг. Площадь кольца зависит от длины стороны многоугольника.
Формула
где a — длина стороны, n — количество сторон.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Для неправильного многоугольника
Описание
У неправильного многоугольника все стороны разного размера.
Формула
Его периметр (P) можно рассчитать, сложив все длины его сторон (a, b, c,d и т.д.). Это первый способ.
Второй способ: если есть стороны с одинаковыми длинами, формулу можно сократить, использовав умножение.
Дан прямоугольник со сторонами 4см, 4см, 2см и 2см. Чтобы узнать периметр, можно просто их все сложить, как показано в формуле выше. А можно сделать так: 4×2+2×2, так как стороны попарно равны.
Этот способ подойдет и для фигур с большим количеством сторон, некоторые из которых равны.
Дан восьмиугольник со сторонами 5см, 5см, 3см, 3см, 3см, 2см и 1см. Периметр можно высчитать сложением, а можно считать так: 5×2+3×3+2+1.
По заданным координатам
Как начертить многоугольник
Еще один способ вычисления периметра многоугольника — построить фигуру на координатной прямой.
Для этого нужно:
- Построить координатные оси.
- Нанести на них заданные координаты (длины) сторон. Соединить точки.
Формула для расчета периметра
Далее нужно находить длины всех получившихся сторон.
- Размеры прямых сторон легко узнавать методом подсчета координатных меток между точками сторон. Записать получившиеся значения рядом со сторонами.
- Найти длину наклонных сторон. Это можно сделать по формуле: \(d=\sqrt<\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2>\)
В формулу нужно подставить вместо x и y координаты сторон.
3. Найти периметр сложением длин всех сторон по формуле для неправильного многоугольника: P=a+b+c+d. где a,b,c,d. — длины сторон. А если получился правильный: P=a×n, где a — длина стороны, а n — количество сторон фигуры.
Примеры решения задач
Задания приведены разного уровня сложности. Расположены по принципу «от простого к сложному».
Во всех задачах нужно найти периметр фигур. Этот вопрос дублироваться в каждом примере ниже не будет.
Пример 1
Дан треугольник ABC. AB=28см, BC=51см, AC=46см.
Пример 2
В прямоугольнике ABCD длина синей стороны 12 см, а красной 18 см.
Пример 3
Дан квадрат со стороной 12 см.
Мы знаем, что все стороны квадрата одинаковые. Их всего 4. Значит, P=12×4=48см.
Пример 4
Дана фигура (данные на рисунке).
На рисунке мы видим восьмиугольник. У него шесть сторон по 10 см и две стороны по 8 см. Значит, P=10×6+8×2=60+16+76см.
Периметр семиугольника как найти