2.7. Правила Кирхгофа
Простые электрические цепи достаточно легко рассчитываются с применением законов Ома и законов последовательного и параллельного соединения проводов. Более сложные разветвленные электрические цепи удобнее рассчитывать при помощи правил Кирхгофа.
Рассмотрим произвольную разветвленную цепь, на отдельных участках которой включены источники тока с известными характеристиками. Точка цепи, в которой сходится более двух проводов (рис. 2.13), называется узлом.
Первое правило Киргхофа.Сумма токов втекающих в узел равна сумме токов, вытекающих из узла:
. (2.19)
Эквивалентная формулировка первого правила Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю . При этом втекающим и вытекающим из узла токам приписываются противоположные знаки. В нашем случае (рис. 2.13):
.
Первое правило Кирхгофа, по сути, является следствием закона сохранения заряда. Оно также отражает тот факт, что при постоянном токе в узле не происходит нарастающее во времени накопление заряда того или иного знака. Для этого нужно, чтобы количество заряда, втекающее в узел в единицу времени, было равно количеству заряда, вытекающего из него.
Второе правило Кирхгофа. В произвольном замкнутом контуре алгебраическая сумма ЭДС, действующих в этом контуре, рана сумме падений напряжений на отдельных участках этого контура:
(2.20)
Некоторые слагаемые в (2.20) как слева, так и справа могут быть отрицательными. При решении конкретных задач токи на отдельных участках первоначально расставляются произвольным образом. Затем произвольным образом выбирается положительное направление обхода замкнутого контура (по часовой или против часовой стрелки). Если ток течет вдоль положительного направления, его берут со знаком «+», если против положительного направления – со знаком «». Если ЭДС действует вдоль положительного направления, т.е. при обходе контура источник проходится от клеммы «» к клемме «+», то значение ЭДС берется со знаком «+», и наоборот. Если в результате расчета сила тока получится отрицательной, то значит, мы не угадали направление тока на данном участке и его просто следует изменить на противоположное. Сама же величина тока, независимо от того, как мы расставим токи в начале решения задачи, получится правильной.
Для доказательства второго правила Кирхгофа рассмотрим произвольный замкнутый контур в цепи, который в общем случае может включать в себя внешние сопротивления и ЭДС на каждом участке (от узла до узла). Положительным будем считать направление по часовой стрелке. Пусть для определенности наш контур включает три участка (рис. 2.14). Направление токов расставим произвольно. Применим закон Ома (2.18) к каждому из трех неоднородных участков цепи. Для первого участка 2-1 работа электрического поля положительна, а работа источника (он заряжается) отрицательна, поэтому:
.
На втором участке цепи 2-3 также работа электрического поля положительна, а работа источника отрицательна, поэтому:
.
На третьем участке цепи 3-1 работа источника положительна, поэтому:
.
Сложим правые и левые части трех последних уравнений, предварительно домножив первое уравнение на «1». Тогда все потенциалы сократятся, в результате получим:
.
Последнее уравнение совпадает с формулировкой второго правила Кирхгофа (2.20) с учетом всех замечаний, сделанных по поводу знаков токов и ЭДС (выражения типа можно формально рассматривать как падения напряжений на внутренних сопротивлениях).
Отметим, что второе правило Кирхгофа, являясь следствием закона Ома для неоднородного участка цепи, по сути дела является следствием закона сохранения энергии.
Правила Кирхгофа применимы и в том случае, когда в цепь включены неомические, т.е. не подчиняющиеся закону Ома () элементы. Такие элементы еще называются нелинейными, поскольку зависимость напряжения на них от силы тока нелинейная. Нелинейными являются, например, большинство радиотехнических элементов: диоды, транзисторы, электронные лампы. Расчеты ведутся также, только падение напряжения на нелинейном элементе следует обозначать не
, а
. Второе правило Кирхгофа при этом имеет вид:
.
Пример 2.9. Параллельное соединение источников тока. В схеме на рис. 2.15 1=14 В, Ом,2=12 В,
Ом,
Ом. Определить токи во всех ветвях.
Решение. Произвольно расставим токи во всех ветвях (рис. 2.15).
В цепи имеется два узла: В и Е. Запишем первое правило Кирхгофа для узла В (для узла Е получится то же самое уравнение):
.
Так как в задаче три неизвестных тока, необходимо три уравнения. Для этого достаточно рассмотреть какие-либо два замкнутых контура цепи и записать для них второе правило Кирхгофа.
Контур АВЕFA: .
Контур АВСDEFA: .
Отметим, что положительное направление обхода контуров задает последовательность букв, которыми они обозначены. Например, в контуре АВЕFA положительное направление обхода – по часовой стрелке. Напомним, что ЭДС первого источника взята со знаком «+», так как при движении вдоль контура по часовой стрелке он проходится от клеммы «» к клемме «+». ЭДС второго источника взята со знаком минус, так как при движении по часовой стрелке он проходится от клеммы «+» к клемме «». В правой части уравнения оба тока взяты знаком «+», поскольку они текут вдоль положительного направления обхода — по часовой стрелке. Такие же правила использованы и для контура АВСDEFA.
Перед решением полученной систему из трех уравнений удобно подставить в них известные величины:
В результате решения системы получаем ответ: А,
А,
А. Так как все токи получились положительными, их направления были случайно указаны верно.
Анализируя полученный результат, можно сделать вывод, что первый источник питает не только нагрузку , но и заряжает второй источник. Второй источник играет роль «паразита». Однако такая схема все-таки иногда используется на практике. Например, в системах электрического питания автомобилей роль первого источника играет генератор постоянного тока, а роль второго – аккумулятор. Если на питание нагрузки расходуются небольшие токи (общее сопротивление внешней цепи велико), то генератор не только питает нагрузку, но и еще подзаряжает аккумулятор. При увеличении тока, потребляемого нагрузкой, направление тока
(рис. 2.15) может изменится, и аккумулятор начинает разряжаться, работая синхронно с генератором. Допустим, что к нагрузке
(рис. 2.15) параллельно подключена еще точно такая же нагрузка. Тогда сопротивление внешней цепи становится равным
Ом. Третье уравнение системы изменится, и решение становится другим:
А,
А,
А. Отрицательное значение второго тока и свидетельствует о том, что он теперь направлен в сторону, противоположную указанной на рис. 2.15, т.е. разряжается.
1. Теория: Законы Кирхгофа
В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.
Пример сложной электрической цепи вы можете посмотреть на рисунке 1.
Рисунок 1. Сложная электрическая цепь.
Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.
Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.
Первый закон Кирхгофа
Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.
Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.
Поясню первый закон Кирхгофа на примере рисунка 2.
Рисунок 2. Узел электрической цепи.
Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:
Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:
Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.
Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).
Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.
Второй закон Кирхгофа.
Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.
Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:
1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).
2. Произвольно выбираем направление токов через элементы цепи.
3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:
— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».
— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».
Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.
Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.
Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).
Расчеты электрических цепей с помощью законов Кирхгофа.
Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.
Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.
Рисунок 4. Пример расчета сложной электрической цепи.
Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:
так как I1 и I 2 втекают в узел А , а ток I вытекает из него.
Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.
Для внешнего контура:
Для внутреннего левого контура:
Итак, у нас получилась система их трех уравнений с тремя неизвестными:
Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:
12 = 0,1I1 +2I.
Далее из первого и второго уравнения выразим ток I2
12 = 0,1I1 + 2I.
Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:
12 = 0,1I1 + 2I.
Выражаем из первого уравнения значение I
I = 2I1– 70;
И подставляем его значение во второе уравнение
Решаем полученное уравнение
12 = 0,1I1 + 4I1 – 140.
12 + 140= 4,1I1
Теперь в выражение I = 2I1– 70 подставим значение
I1=37,073 (А) и получим:
I = 2*37,073 – 70 = 4,146 А
Ну, а согласно первому закона Кирхгофа ток I2=I — I1
I2=4,146 — 37,073 = -32,927
Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .
Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.
Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.
Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.
Для закрепления результатата предлагаю посмотреть подготовленное мной видео:
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
11. Направление обхода замкнутого контура
Поскольку значение интеграла по замкнутому контуру зависит от направления интегрирования, условимся в качестве Положительного направления обхода контура принимать направление, при котором внутренняя область, ограниченная данным замкнутым контуром, остается Слева от направления движения. Интегрирование в положительном направлении будем обозначать символом или просто
, интегрирование в отрицательном направлении — символом
.
Первый и второй законы Кирхгофа
Некоторые электрические цепи можно изобразить в виде простого контура, содержащего источник питания и небольшое количество деталей — резисторов, конденсаторов или других. Но существуют и большие схемы, включающие в себя несколько замкнутых ветвей. В этих случаях важно точно рассчитать электрические параметры на любом рассматриваемом участке. Законы Кирхгофа позволяют их определить путём составления и решения нескольких простых уравнений.
Первый закон Кирхгофа
Закон Ома описывает взаимосвязь между напряжением, сопротивлением и силой тока в простых одноконтурных цепях. На практике чаще встречаются сложные разветвленные цепи, состоящие из нескольких контуров и многих узлов, которые невозможно описать, применяя стандартные правила для расчета последовательных и параллельных цепей.
Определить напряжение и силу тока в разветвленных цепях позволяют правила Кирхгофа, которые в технической литературе обычно называют законами Кирхгофа. Хотя более корректным следует считать название «правила», поскольку они не являются фундаментальными законами природы. Например, первое правило Кирхгофа вытекает из закона сохранения заряда. Оно гласит, что сумма всех токов в каждом узле электроцепи равна нулю.
Формулировка закона требует уточнения следующих терминов:
- Узел — это определённое место на схеме, в котором сходится 3 или большее количество проводов. Узлами можно назвать точки, расположенные на протяжении 1 провода, если в этих местах подсоединены ещё провода.
- Движение тока, направленного к определённому узлу, условно называют положительным, противоположное — отрицательным.
Закон Кирхгофа, если говорить простыми словами, может быть сформулирован так: сколько токов втекает в узел, столько же и вытекает. Это свидетельствует о непрерывности тока для электрической цепи. Поэтому существует ещё одна формула, выражающая первое правило Кирхгофа:
Здесь с одной стороны знака равенства рассматриваются токи, входящие в определённый узел, а с другой — выходящие.
При использовании первого закона Кирхгофа для цепи переменного тока применяются мгновенные значения напряжений, которые принято обозначать буквой İ. Расчеты в этом случае проводятся по уравнению, представленному в комплексной форме.
Второй закон Кирхгофа
Когда рассматривается электрическая цепь, подключённая к источнику тока, в каждой её точке имеется определённый потенциал. Разность между ними создаёт электрическое поле, которое вызывает перемещение зарядов.
Цепь представляет собой замкнутый контур, по которому движутся электроны. Электрическое поле выполняет определённую работу по их перемещению. Каждый заряд перемещается по цепи, а затем под действием ЭДС источника замыкает круг.
Второй закон Кирхгофа гласит, что работа по перемещению заряда вдоль любого контура электроцепи с возвратом в начальную точку равна нулю. В этой формулировке подразумевается любой замкнутый контур, причем как тот, который включает источник питания, так и о тот, где его нет.
Работа электрического поля при перемещении заряда в рассматриваемом случае представляет собой сумму падений напряжения для каждого из участков контура. Таким образом, второе правило или закон Кирхгофа гласит, что сумма напряжений всех ветвей в контуре равняется нулю. Это можно выразить в виде следующего уравнения:
Если напряжение и направление обхода контура совпадают, то U записывают со знаком плюс, в противном случае — со знаком минус. Направление обхода выбранного контура может быть определено произвольным образом. Второе правило Густава Кирхгофа его не регламентирует.
Если в контуре есть один или несколько источников питания, то формулу можно выразить следующим образом:
Здесь имеется p источников питания, q участков контура. Сумма всех ЭДС имеющихся источников питания равна сумме падений напряжения.
Значение правил Кирхгофа
Законы Кирхгофа выражают фундаментальные принципы физики. Их формулировки кажутся очень простыми и очевидными. Но на самом деле они представляют собой метод, позволяющий рассчитать электрические параметры сетей очень сложной конфигурации.
С помощью законов Кирхгофа можно составить систему независимых уравнений для расчета параметров электрической цепи. Важно, чтобы их количество было не меньше, чем число параметров, которые необходимо определить.
На приведённом рисунке представлена электроцепь, для которой будет проводиться расчёт. Используя первый закон или правило Кирхгофа, для узла A можно записать:
В этот узел входят два тока, а выходит один. Далее необходимо применить второе правило. Для этого можно выбрать внешний контур. Видно, что здесь имеется два источника тока и два резистора. Поэтому будут получены уравнения:
Здесь приведены 2 эквивалентные формулы. В левой части равенства учтены электродвижущие силы двух источников тока, в правой — падение напряжения на обоих резисторах с учётом направления токов. Ещё одно уравнение можно получить из 2 закона при обходе по правому внутреннему контуру:
В результате получена система, включающая в себя три уравнения с тремя неизвестными:
Используя конкретные данные, можно подставить в систему уравнений численные значения и найти, чему равна сила тока для каждой ветви, относящейся к узлу A. При расчётах важно понимать, что при достаточно сложной конфигурации электроцепи иногда бывает непросто определить направление силы тока для каждой ветви.
Первый и второй законы Густава Кирхгофа позволяют точно определить не только величину тока, но и его знак. Если в приведённом примере после вычисления искомых значений с помощью представленной системы уравнений окажется, что ток с индексом 2 принимает отрицательное значение, то это означает, что на самом деле он имеет направление, противоположное указанному на рисунке.
Законы для магнитного поля
Правила Кирхгофа нашли свое применение и при расчете магнитных цепей. Первый закон Кирхгофа для магнитной цепи выглядит так:
Проще говоря, сумма всех магнитных потоков, проходящих через узел, равняется нулю.
Второй закон в применении к магнитным полям звучит следующим образом: «Сумма магнитодвижущих сил в контуре равняется сумме магнитных напряжений». Формула выглядит так:
Кирхгофом выведены правила, имеющие абсолютный прикладной характер. С их помощью можно решать практические вопросы в электротехнике. Широкое применение этих правил объясняется простотой формулировки уравнений и возможностью их решения с применением стандартных способов линейной алгебры.