Конденсаторы в БП?
Я не буду уподобляться авторам таких постов (что-то последнее время на хабре стало модно писать о том как перепаять конденсатор) и не стану писать топик о том, как я, перепаяв пару конденсаторов и запаяв пару контактов оживил компьютерный БП.
В общем, было в БП 2 вздувшихся конденсатора 10В x 1000мкФ. Под рукой не оказалось таких же и я впаял на их место 16В x 1000мкФ и 25В x 1000мкФ (уж что было, то и впаял). Здравый смысл подсказывает, что ничего страшного не случится и всё будет работать хорошо, однако информация в интернете по этому поводу разнится. Хотелось бы спросить у опытных и умных хабрапользователей, чем чревата такая замена?
И еще вопрос. Блок питания заработал и чувствует себя хорошо, но выходные напряжения немного высоковаты (12.28 и 5.13), но стабильны — просадок и скачков не наблюдается. Нагрузка — мат. плата miniITX и жесткий диск. Насколько это опасно для комплектующих?
Можно ли поставить пусковой конденсатор большей емкости
Строительство
Для чего нужен пусковой конденсатор?
Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
Поэтому их ещё называют фазосдвигающими.
Место установки — между линией питания и пусковой обмоткой электродвигателя.
Условное обозначение конденсаторов на схемах
Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс "+" и минус "-" и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Пусковой конденсатор позволяет организовать начальный момент вращения вала ротора электромотора. Подключение электрических двигателей в сеть напряжением 220 вольт требует кратковременного присоединения пусковой обмотки через подобную электрическую ёмкость.
Устройство и предназначение конденсаторов
Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.
Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки.
Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).
Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.
Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.
Функциональные возможности
В цепях постоянного тока элемент некоторое время накапливает заряд на обкладках и не пропускает электроны через диэлектрик. Это значит, что в начальный момент постоянный ток проходит через деталь до окончания заряда. Такое же происходит и при разряде.
Важно! Ток, который периодически изменяется, элемент пропускает через себя. Такое возможно, потому что двухполюсник циклически перезаряжается при смене полярности электричества.
Характеристики
Напряжение, создаваемое на обкладках двухполюсника, равно разности потенциалов:
Зная напряжение и заряд, можно вычислить ёмкость (С). Это одна из основных характеристик двухполюсника:
где:
- C – ёмкость, Ф (фарад);
- q – заряд, накопленный двухполюсником, Кл (кулон);
- U – напряжение, В.
Электроёмкость является физической величиной, которую определяют, разделив заряд пластины на разность потенциалов между пластинами. Единица измерений C – фарада (Ф).
К сведению. Ёмкость, равная 1 Ф, – большая величина, поэтому на практике её измеряют: в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ).
К остальным параметрам двухполюсника относятся:
- плотность энергии;
- номинальное напряжение;
- полярность.
Когда масса корпуса детали значительно меньше, чем общая масса электролита и пластин, тогда достигается максимально высокая плотность энергии.
Номинальным называется такое напряжение, при котором элемент может работать длительное время, без нарушения (отклонения) рабочих характеристик.
Емкостные двухполюсники бывают:
- неполярными;
- полярными (электролитическими).
Неполярные детали при подключении не ориентированы на полярность выводов заряда источника питания. Особенность электролитических элементов связана с химической реакцией между диэлектриком и электролитом. У таких моделей есть анод (положительный вывод) и катод (отрицательный вывод).
Разновидности емкостных элементов
Емкостные двухполюсники различают по следующим видам:
- по типу диэлектрика – вакуумный, газообразный, жидкий, твёрдый, электролит, оксидно-полупроводниковый;
- по конструктивной особенности изменять C – постоянные, переменные, подстроечные;
- по назначению – общие, специальные.
Пусковые конденсаторы относятся к двухполюсникам специального назначения.
Простые способы присоединения электромотора
Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:
Порядок соединения указаны на крышке клеммника с обратной стороны.
Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён.
Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.
Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.
Специфика схем с конденсаторами
Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:
- включение в «треугольник»;
- подсоединение в «звезду».
К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.
Схемы подсоединения к линии 380 В
В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.
Схемы включения в однофазную сеть
При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:
- от рабочей катушки;
- от дополнительной;
- общий вывод для обеих обмоток.
Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.
Тип сборки «Треугольник»
Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.
Тип сборки «Звезда»
Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.
Величина емкости: рабочей и пусковой
Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.
Для запускающего элемента
Известны две формулы для определения ёмкости пускового двухполюсника:
- для схемы «звезда» – Cп = 2800*I/U;
- для схемы «треугольник» – Cп = 4800*I/U.
Номинальный ток рассчитывают, пользуясь выражением:
Здесь:
- P – мощность мотора;
- U – напряжение сети;
- η – КПД;
- cosϕ – коэффициент мощности.
Для рабочего элемента
Подобрать рабочий конденсатор можно из расчёта:
Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.
Упрощенный вариант расчета пускового элемента
Грубо подобрать C можно, учитывая, что на каждые 0,1 кВт должно приходиться 7 мкФ (Сп = 70*P). Когда двигатель не запускается, ёмкости мало, когда при работе перегревается – много.
Пусковой конденсатор
Если выбирать в качестве пускового элемента один из металлобумажных типов, то можно остановиться на таком, как – мбгч.
Это герметизированный и высоковольтный запускающий элемент. Его выпускают с величиной постоянной ёмкости до 10 мФ и рассчитанным на напряжение 250-1000 В. Применяют такой двухполюсник в сетях любого рода тока.
Какой тип использовать
Требования к конденсаторам для запуска электродвигателей простые:
- величина ёмкости достаточная для запуска мотора;
- номинальное напряжение подбирают на 10-15% выше, чем подключаемое;
- двухполюсник обязан работать с приложенным видом тока.
Есть небольшие нюансы для электрических машин, различающихся по принципу работы.
Для работы с трехфазным электродвигателем
В этом случае деталь осуществляет сдвиг фазы у обмотки асинхронной машины, и ее ёмкость должна быть высокой. Создание пускового момента и дальнейшая работа под нагрузкой требуют более точного подбора этой характеристики элемента.
Включение с однофазным электродвигателем
Пусковые конденсаторы здесь применяются для присоединения дополнительной обмотки. Она предназначена для запуска мотора и может быть включена как постоянно, через двухполюсник, так и кратковременно без него.
Особенности выбора детали
Выбранные конденсаторы пусковые соответствуют подаваемому напряжению. Величина их ёмкости не должна позволять двигателю перегреваться во время работы и легко запускать его в момент включения. Особых сложностей с подбором элементов не возникает.
Использование электролитических конденсаторов
Пусковой конденсатор для начала работы трёхфазного двигателя от 220в обязан иметь большую ёмкость. Чтобы сдвинуть с места вал движка мощностью 3 киловатта, необходимо 2100 мкФ ёмкости. Для подбора такой величины С понадобится целая батарея неполярных компонентов. Электролитические двухполюсники (электролиты) обладают большей ёмкостью при меньших размерах. Но включение их в цепь переменного тока надолго недопустимо.
Осторожно. При длительном присоединении емкости электролит закипает, и элемент взрывается.
Рабочее напряжение
У конденсаторов для электродвигателей напряжение Uном должно быть выше Uпит. Если питающее напряжение 220 В, то элемент берут с Uн = 250-400 В.
Подключение электромотора своими руками
Как подобрать конденсатор для однофазного двигателя, уже понятно. Отбор конденсаторов для трехфазного мотора рассмотрен. Как же практически смонтировать схему для пуска двигателя, что для этого необходимо?
Схема состоит из следующих компонентов:
- двигатель (до 3 квт);
- конденсаторы: пусковой и рабочий, которые отличаются по ёмкости;
- пусковая кнопка ПНВС на 220 В.
Зачем нужна пусковая кнопка? Для кратковременного подключения электролитического двухполюсника и начала вращения двигателя. Собирается цепь согласно схеме на картинке ниже. Все соединения производятся под болтовые зажимы. Оголённые участки проводов подлежат обязательной изоляции.
Применение запускающих и рабочих конденсаторов позволяет осуществить запуск двигателей в любой цепи. Емкости двухполюсников должно быть достаточно для начала вращения и устойчивой работы под нагрузкой. Детали предпочтительно использовать новые.
Видео
Т.к. вы неавторизованы на сайте. Войти.
Объявления на НН.РУ — Стройка
Стол кухонный милан новый с доставкой бесплатно до подъезда по городу нижний новгород дзержинск. Размер: 1154*752*756 мм каркас: ножки.
Цена: 4 500 руб.
ОПГС в мешках и валом! Без выходных! Доставка по городу и области! Любая форма оплаты!
Цена: 1 350 руб.
Набор кухонный уголок стол табуреты новые бесплатно доставка по городу нижний новгородфабрика дасторг предлагает — кухонные уголки со.
Цена: 8 050 руб.
Набор орхидея ясень новая бесплатно привезу по городу нижний новгород дзержинск. Есть другие цвета и модели от 5000руб распродажа.
Цена: 7 500 руб.
В Нижнем Новгороде настоящий строительный бум. В каждом районе города появляются новые дома, которые будут сдаваться в ближайшие годы.
Если на двигатель поставить конденсатор большей емкости
Новый год не за горами — пора покупать подарки для самых любимых и дорогих. Дед Мороз уже побывал в Нижнем Новгороде и оставил.
Для чего нужен пусковой конденсатор?
Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
Поэтому их ещё называют фазосдвигающими.
Место установки — между линией питания и пусковой обмоткой электродвигателя.
Условное обозначение конденсаторов на схемах
Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс "+" и минус "-" и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).
Фазосдвигающий конденсатор.
При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.
Емкость фазосдвигающего конденсатора нужно рассчитать так:
- для соединения «треугольником»: Сф=4800•I/U;
- для соединения «звездой»: Сф=2800•I/U.
Об этих типах соединения можно подробнее ознакомиться тут:
В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.
Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).
В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.
Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.
Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.
В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.
Рабочий конденсатор.
Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.
Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.
Пусковой конденсатор.
Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.
Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.
Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.
Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.
Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.
Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.
При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.
Двигатель АПН 212, 220380, 2,471,43А, КПД-0.7, cos-0.7, 400W.
Ср = 4800 * 2,47 А 220 В = 54 МF. (полная формула)
Ср = 400Вт * 7 = 28 МF (сокращенная формула)
Почему разница Ср больше чем в 2 раза?
Расчет тока по формуле I = P (400) 1.73 * U (220) * cos (0.7) * КПД (0.7) = 2.15 А, а на шильдике 2.47А. Опять отличие. В чем дело?
Поставил конденсатор рабочий 30 MF запускается плохо – рукой, работает нормально – точило. Круг на 150 мм.
Распространенная ошибка: путают местами формулы для расчета фазосдвигающей емкости. Ошибка в коэффициентах, не учли, что для схемы включения «звезда» он ниже, чем для «треугольника». А дальше все точно рассчитывается.
Вы же знаете, что фазосдвигающий конденсатор нужен только при включении в сеть 220 В. В трехфазной сети 380 В уже есть сдвигающее воздействие от реактивной (индуктивной) составляющей энергии, заданное еще генератором на такой далекой электростанции.
Поэтому расчеты рабочего фазосдвигающего конденсатора понадобиться проводить только для напряжения 220 В. Когда не действует индуктивная реактивная составляющая от генератора на электростанции, тогда приходится прибегать к местной емкостной реактивной составляющей.
Это напряжение можно подать на электродвижок соединенный как «звездой», так и «треугольником». Вы поняли, что если оставить электродвигатель со схемой «звезда», то через две последовательно соединенный обмотки пойдет меньший из указанных на шильдике токов — 1.43 А. Ну а в случае с изменением схемы расключения начала обмоток электродвигателя на «треугольник», то при подаче отдельно на каждую обмотку по 220 В, через них пойдет наверняка больший ток — 2.47 А.
Значит, Ваш двигатель при соединении «звездой» имеет такие параметры:
220 В,
1.43 А,
расчет рабочего фазосдвигающего конденсатора следующий:
Сф = 4800*I/U = 4800*1.43/220 = 31.2 мкФ;
Для соединения «треугольником» параметры будут такими:
220 В,
2.47 А,
расчет рабочего фазосдвигающего конденсатора такой:
Сф = 2800*I/U = 2800*2.47/220 = 31.4 мкФ.
Ну, приблизительно то же самое значение фазосдвигающей ёмкости получается при приблизительном расчете на каждые 100 ватт по 7 мкФ:
400*7 = 28 мкФ.
Формула для расчета номинального тока наиболее точна для больших электродвигателей циркулярок, тельферов, насосов, у которых мощность превышает 3 кВт.
Плохо пускается точильное от рассчитанного конденсатора уже понятно почему: потому что конденсатор рабочий. Конечно, если заморочиться, то не помешает, таки, поставить пусковой конденсатор. А можно и рукой дернуть! Да и пустить в нужную сторону.
О замене электролитических конденсаторов в советской аппаратуре
Тема, вроде бы заезженная, но иногда все же возникают вопросы. Ко мне обратился товарищ, который хотел самостоятельно перепаять в своем усилителе конденсаторы, с вопросом что на что можно менять, и как это лучше сделать. Попытаюсь в этой статье систематизировать информацию.
1. Для чего это нужно. У многих до сих пор в эксплуатации находится аппаратура производства времен СССР. Хорошо это или плохо мы здесь обсуждать не будем, просто примем это за факт. Кого-то вполне устраивает мощность и качество звучания советской аудиоаппаратуры, кто-то, ностальгируя по былым временам, периодически слушает кассетные или катушечные магнитофоны, кто-то занимается коллекционированием и восстановлением старой техники. Все эти люди рано или поздно сталкиваются с неисправностью имеющейся у них аппаратуры из-за выхода из строя электролитических конденсаторов. С момента распада СССР прошло уже 30 лет, а срок службы конденсаторов (кстати, любых, и современных тоже) порядка 10000 часов или около 10 лет. Большинство конденсаторов отработало двойной, а то и тройной срок службы, поэтому даже при их исправности их крайне желательно заменять, причем все без исключения чтобы не лазить потом в аппарат каждый месяц. Даже несмотря на то что большинство из них (90-95%) будет исправно.
2. Экономическая целесообразность. Иногда бывает, что даже такой несложный ремонт как простая замена конденсаторов может обойтись намного дороже чем стоимость самого аппарата. Как по затратам на новые детали, так и по стоимости работы. В этом случае для сокращения затрат можно отступить от правила замены всех конденсаторов подряд и поменять, например, только мелочевку, которая стоит недорого. А, например, большие конденсаторы фильтров питания (предварительно убедившись, что они еще выполняют свою функцию) пока оставить. Также можно отказаться от услуг мастера, выполнив эту несложную работу самостоятельно. Из инструмента потребуются лишь паяльник, припой, канифоль и кусачки. Ну и отвертка для разборки и сборки аппарата.
3. Общие принципы замены. Основные параметры конденсатора – номинальная емкость и максимальное рабочее напряжение. Ввиду того, что ряд номиналов емкости и напряжения советских конденсаторов отличается от современных (например, советский конденсатор имеет емкость 20 мкф на напряжение 6 В, а современный, ближайший к нему 22 мкф х 6,3 В) общий принцип замены следующий: советский конденсатор менять можно на современный конденсатор БОЛЬШЕЙ емкости и БОЛЬШЕГО напряжения. Менять на конденсатор с меньшим максимальным напряжением недопустимо – он выйдет из строя, так как в аппарате на него будет поступать напряжение больше того, на что он рассчитан. Менять на конденсатор меньшей емкости можно, но тогда, возможно, параметры аппарата станут гораздо хуже. Электролитические конденсаторы чаще всего применяются для двух функций: фильтрация пульсаций напряжения питания и в качестве разделительных между каскадами усиления. Емкость меньше необходимой в цепях фильтрации питания приведет к увеличению пульсаций питающего напряжения. Например, в динамиках магнитофона может появиться слабый фон переменного тока (50 или 100 Гц). Емкость меньше необходимой в сигнальных цепях между каскадами приведет к завалу АЧХ этих каскадов в области нижних частот, в том же магнитофоне это приведет к отсутствию басов.
4. Менять конденсатор в цепи питания на конденсатор большей емкости можно и нужно! Большая емкость приведет к снижению пульсаций по цепям питания. На сколько можно увеличить емкость? Да хоть в 10 раз. Будет только лучше. Но в 10 раз увеличивать все же не следует по следующей причине: в момент включения аппарата через диоды выпрямителя источника питания будет протекать большой импульсный ток заряда этих конденсаторов. Если емкость увеличить сверх всякой меры этот ток может привести к выходу этих диодов из строя. Хотя это касается только конденсаторов, непосредственно подключенных к этим диодам. Если конденсатор стоит после резистора (RC-фильтр) или дросселя (LC-фильтр) то диодам ничего не будет. В общем, рекомендация следующая: емкость конденсаторов, стоящих по цепям питания, можно смело увеличивать в 3-4-5 раз.
Емкость конденсаторов в сигнальных цепях также можно увеличивать. Это только положительным образом скажется на характеристиках сигнала. Но и тут есть один неприятный момент: в усилителях звукового сигнала зарядка переходных емкостей приводит к появлению щелчка в динамике при включении усилителя. Чем больше эта емкость, тем сильнее и неприятнее будет этот щелчок. Поэтому рекомендация следующая: емкость в сигнальных цепях можно без проблем увеличить в 1,5-2 раза.
Зачем же вообще ставить конденсаторы большей емкости? Во-первых, это приведет к незначительному, но улучшению характеристик аппарата. Во-вторых, старые советские конденсаторы зачастую имеют значительно большие габариты, чем соответствующие им по параметру современные. И современные могут просто не встать на плату из-за того, что расстояние между ножками старого было намного больше. Выводы, конечно, можно изогнуть и оставить конденсатор висеть на них в воздухе, но тогда конденсатор будет удерживаться только за счет сцепления дорожек плат, а они часто очень легко отваливаются. В третьих, ставя конденсаторы другой емкости можно значительно, в несколько раз, сократить их номенклатуру для закупки. Например, вместо конденсаторов 5мкф х 16В, 5мкф х 25В, 10мкф х 10В, 10мкф х 16В, 20мкф х 10В, 20 мкф х 16В везде ставить один и тот же конденсатор 22мкф х 35В. В четвертых, ставя конденсатор большей емкости мы, тем самым, закладываем несколько больший запас надежности, аппарат дольше проработает до того момента как емкость упадет ниже некоторого предела, при котором схема перестает функционировать. Ведь даже современные конденсаторы со временем высыхают и теряют свою емкость.
Но из этой рекомендации есть одно исключение: во времязадающих RC-цепях емкость необходимо по возможности ставить ровно такую как на схеме, иначе изменится время срабатывания чего-нибудь. Например, в схеме электронного управления ЛПМ магнитофона увеличение этих емкостей приведет к тому что магнитофон будет переключаться с режима на режим с большими задержками, что не всегда удобно пользователю. Но таких цепей крайне мало, поскольку электролитические конденсаторы из-за своих не очень хороших характеристик крайне редко используются в этом качестве.
5. Я в своей практике чаще всего использую следующие номиналы: 1мкф х 50В (размер 5х11), 10мкф х 50В (размер 5х11), 33мкф х 35В (размер 5х11), 100мкф х 25В (размер 6,3х11), 330мкф х 35В (размер 10х12,5), 1000мкф х 50В (размер 12,5х25), 2200мкф х 25В (размер 12,5х25). Этих семи номиналов хватает чтобы заменить 95 — 99% конденсаторов в любой советской бытовой аппаратуре. Какую марку выбрать – советовать не буду, это, по большей части, вкусовщина. Посоветую лишь только избегать откровенно дешевой китайщины (хотя я такие тоже использовал, проблем не было за исключением того, что 3 шт из заказанной партии 50 шт с алиэкспресс оказались уже дохлыми) и также не вижу смысла ставить в советскую аппаратуру сверхдорогие аудиофильские – после этого играть сильно лучше чем с завода она точно не станет. Лучше выбирать хороший качественный середнячок, например такие известные бренды как EPCOS, Panasonic, Jamicon, Nichicon, Rubycon, CapXon.
6. В некоторых случаях допустимо ставить конденсатор и с меньшим максимальным рабочим напряжением. Достаточно часто в советской технике конденсаторы стоят с очень большим запасом. Это могло быть связано как с отсутствием на конкретном заводе более подходящих конденсаторов, так и унификацией (чтобы не плодить на одной плате множество разных номиналов, ведь их все надо заряжать в монтажный автомат), а также, например следующим моментом: например, если конденсатор стоит на шине питания 23В, ставить сюда конденсатор на 25В рискованно – практически нет запаса по напряжению, а следующий в линейке конденсаторов серии К50-6 есть только на 50В. Поэтому его и применили. У современных конденсаторов шаг напряжений более мелкий, поэтому в вышеприведенной ситуации можно вместо конденсатора на 50В без каких-либо проблем можно применить конденсатор на 35В. Напряжения в разных точках схемы обычно проставляются рядом с соответствующими проводниками. Также о напряжении в схеме можно судить по контактам ее разъема. Если на контакте разъема какой-либо платы написано «+12В» значит данная часть схемы питается от напряжения 12В и выше него там быть просто не может, значит там можно без проблем применять конденсаторы с максимальным напряжением даже 16В. Вообще говоря, наличие и анализ схемы на конкретный аппарат существенно помогает подобрать более подходящий конденсатор из того что есть под рукой.
7. Электролитические конденсаторы – полярные! При установке необходимо строго соблюдать полярность. У советских конденсаторов обычно маркировался положительный вывод – символом «+» краской ближе к плюсовому выводу. У некоторых «+» и «-» формовались в пластике в месте выхода выводов. Также «+» наносился шелкографией на саму печатную плату, часто даже с обеих сторон платы. Но на эту маркировку полностью ориентироваться не стоит, поскольку из-за плотного расположения деталей, этот символ «+» может относиться к соседнему конденсатору или даже диоду. Также часто этот символ наносился неразборчиво или непонятно, к какому выводу он относится. Поэтому при демонтаже старого конденсатора необходимо обращать внимание и запоминать, с какой стороны у него плюс. У импортных конденсаторов почти всегда маркируется минус – контрастной полосой около соответствующего вывода. Иногда в качестве разделительного конденсатора в сигнальных цепях используется неполярный конденсатор. Отличить его можно по отсутствию маркировки плюсового или минусового вывода. На схеме он обозначается как конденсатор, у которого обе обкладки «жирные»: Конструкция его такова, что он, как бы содержит внутри два последовательно включенных обычных полярных конденсатора. Такой конденсатор можно заменить также двумя полярными, включенными последовательно встречно, например плюсами друг к другу. Емкость этих конденсаторов должна быть не менее чем в 2 раза больше заменяемого, поскольку при последовательном соединении конденсаторов, результирующая емкость батареи получается в 2 раза меньше. Некоторые специалисты советуют в точку соединения конденсаторов подавать потенциал от источника питания через высокоомный резистор. При соединении конденсаторов плюсами вместе, в эту точку надо подавать плюс источника питания. Если же конденсаторы соединяются минусами вместе, в эту точку подается максимальный отрицательный потенциал от источника питания. Резистор выбирается порядка 100 – 500 кОм. В этом случае конденсатор будет гарантированно работать под необходимым постоянным потенциалом. Я считаю эту заботу излишней, поскольку при работе пары встречно включенных конденсаторов необходимый потенциал установится автоматически за счет утечки тока одного из них, того, который в данный момент находится под отрицательным потенциалом. Использовать или нет данное схемотехническое решение – оставляю на ваш выбор и вкус. Но это решение точно не следует использовать в высокоомных цепях, например, на входе от пьезоэлектрического звукоснимателя проигрывателя или микрофонных входах. Там сопротивление этого резистора подтяжки может оказать сильное шунтирующее влияние на уровень полезного сигнала.
8. В качестве примера такого подхода рассмотрим следующую задачу: замену всех конденсаторов в кассетном магнитофоне НОТА М220-С. Вообще, этот магнитофон неисправный, но перед тем как искать неисправности, необходимо устранить ту, что там точно есть – неисправные и высохшие электролитические конденсаторы. Будем последовательно проходить всю схему, в случае применения конденсатора с отклонением от номинала, я буду объяснять почему в том или ином случае так можно сделать.
Начнем с платы логики.
На ней 5 конденсаторов: С2, С4, С9, С12, С13.
С2 – 10 мкф х 63В, С4 – 22 мкф х 25В, С9 – 10мкф х 63В, С12, С13 – 4,7мкф х 100В. С2 стоит в схеме логики, проследив по цепям можно видеть что схема питается от источника 8 В, значит напряжение на конденсаторе никогда не превысит этого значения. Можно смело заменить хоть на 16-вольтовый конденсатор. Ставим из нашей номенклатуры 10мкф х 50В. Да, это схема управления логикой, конденсаторы здесь определяют паузы и задержки между срабатываниями, их емкость увеличивать слишком сильно не следует. Поэтому С4 меняем на 33мкф х 35В, С9 также можно заменить хоть 16-вольтовым, поскольку он стоит параллельно 8-вольтовому стабилитрону. Его емкость можно увеличивать, он стоит по питанию, поэтому ставим 33мкф х 35В. С12, С13 также питаются от 8В, заменяем их на 10мкф х 50В. Емкость можно сделать больше, потому как это схема датчика автостопа, он лишь будет дольше срабатывать.
Продолжаем. Устройство входное. С1 – 10мкф х 63В, С4, С5, С6, С7, С8, С9 – 4,7мкф х 100В, С2, С3 – неполярные 5мкф х 16В. Все конденсаторы 4,7мкф стоят в звуковых цепях, емкость увеличивать можно, напряжение питания схемы (судя по контактам разъема) — +/-15В, то есть напряжение на конденсаторах никогда не превысит 30В, заменяем их на 10мкф х 50В. С1 стоит по питанию, можно поставить побольше, 33мкф х 35В (хотя, можно было бы и воткнуть 10мкф х 50, разницы никакой. Ставлю разные из соображений более равномерного расхода конденсаторов разного номинала). Неполярные С2, С3 5мкф заменяются (как было сказано выше) двумя конденсаторами 10мкф, включенными последовательно встречно, например минусами вместе. При последовательном соединении двух одинаковых конденсаторов, общая емкость батареи получается в 2 раза меньше чем емкость отдельного конденсатора. То есть, для двух конденсаторов 10мкф, включенных последовательно общая емкость получается как раз необходимые 5мкф.
Далее у нас усилитель воспроизведения.
Там конденсаторы С5, С6, С13, С14 – 10мкф х 63В заменяем на 10мкф х 50В (схема питается от +/-15В), С11, С12 заменяем на 100мкф х 25В, С15 (стоит по питанию) заменяем на 330мкф х 25В.
В схеме усилителя записи электролитических конденсаторов нет, на плате шумоподавителя тоже.
На плате усилителя мощности стоят неполярные конденсаторы 5мкф х 16В, меняем на 2х10мкф х 50В, и полярные (но на схеме почему то обозначены как неполярные) 30мкф х 6,3В – заменяем на 33мкф х 35В.
Далее плата индикаторов уровня.
Заменяем все конденсаторы на 10мкф х 50В поскольку схема питается от +/-15В.
На всех мелких платах конденсаторы поменяли, остались только на основной плате и плате источника питания.
На основной плате стоят неполярные конденсаторы 5мкф х 16В, заменяются аналогично входному устройству на 2 последовательно включенных конденсатора 10мкф х 50В, и стоят 10мкф х 63В, заменяются на те же 10мкф х 50В, поскольку эта часть схемы (генератор стирания и подмагничивания) питается от источника +/-15В.
В источнике питания. С1, С2 можно заменить на любой, 10мкф, 33мкф, 100мкф, он стоит по питанию, емкость чем больше, тем лучше. Поставим 100мкф х 25В. С5, С6, С7, С8, С10, С11 меняем на 1000мкф х 50В. С9 меняем на 2200мкф х 25В.
Следует отметить, что после замены конденсаторов, ремонта, смазки и чистки ЛПМ аппарат полностью заработал. В ЛПМ были заменены головки воспроизведения/записи из-за высокого износа и головка стирания из-за, вероятно, межвиткового замыкания (с ней генератор стирания и подмагничивания не запускался).