HWinfo VR VCC TEMPERATURE
Hello. VR VCC Temp. (SVID) Under load and without it, the temperature shows 79-85, constantly. Is this a sensor bug? BIOS is default.
Dalai
Well-Known Member
- Apr 23, 2021
- #6
@day:
Looking at the motherboard layout, it doesn’t have any heatsinks on the VRMs. How is the airflow in your case, especially over the VRMs? Apart from that, the temperatures are probably fine, despite being on the higher side. And I don’t think this is a sensor bug.
New Member
- Apr 24, 2021
- #7
@day:
Looking at the motherboard layout, it doesn’t have any heatsinks on the VRMs. How is the airflow in your case, especially over the VRMs? Apart from that, the temperatures are probably fine, despite being on the higher side. And I don’t think this is a sensor bug.
Максимальная температура VRM материнской платы
Приветствую друзья. Поговорим немного о температуре материнской плате, а точнее о температуре VRM, ведь сама материнка греться не может — только компоненты на ней (чипы).
Максимальная температура VRM материнской платы
Температура VRM при обычной работе ПК нежелательно чтобы повышалась более чем на 50 градусов.
Максимально допустимая температура — 100 градусов, после которой могут быть необратимые последствия. Но и 100 градусов при продолжительной работе — тоже приведут к проблеме.
В играх она может достигать 70, если выше — то уже плохо, во-первых выше 90 может быть деградация не самого качественного текстолита, выше 100 — могут плавиться медные дорожки, но это еще зависит от платы. В любом случае высокая температура — зло.
Посмотреть температуру VRM лучше всего в программе AIDA64:
Но AIDA64 может и не показывать датчик VRM — это еще зависит от самой материнской платы. Возможно если нет датчика, то стоит обратить внимание на температуру системной платы (а ее также можно посмотреть в BIOS).
В основном греются только мосфеты, и при это могут греться так, что прикоснуться нельзя. В таком случае — нужен обдув, иначе это просто уменьшит срок службы платы.
VRM — что это?
Это несколько модулей, которые обеспечивают преобразование 12 вольт от блока питания в куда меньшее напряжение, которое нужно процессору.
Кстати процессору нужно всего 1.5 вольт, но чтобы они были стабильные, без скачков и перепадов.
VRM располагается слева от сокета (или над ним).
Вообще VRM — важная вещь, эта система питает процессор, обеспечивает его постоянным током, который должен быть качественным. И в принципе все хорошо — простые процессоры, офисные, которые имеют 2 или 4 ядра — особо нетребовательные. Но если брать топовый процессор, то если его установить на плату со слабым VRM — при максимальных нагрузках могут быть вылеты, выключения ПК.
Вообще VRM — это не одно какое-то устройство, а несколько:
- ШИМ-контроллер или PWM-контроллер (салатовый на картинке).
- Мосфеты (оранжевые). Именно они кстати греются прилично, если ставить топовый проц, то на них обязательно должен быть радиатор.
- Дроссели (красный).
- Конденсаторы (синий).
Пример платы, на которую можно ставить проц среднего уровня или офисный, но топовый — не стоит. Система VRM может и вытянет, но все равно — не стоит, нет радиаторов, вообще компонентов мало, плата вряд ли рассчитана на топовые процы и уж тем более на разгон.
Вот пример, когда элементы VRM имеют качественное охлаждение + радиатор есть на чипсете:
Разумеется такие платы стоят дороже, но если вы собираетесь разгонять процессор — то не стоит жалеть денег на плату. Даже если вы будете ставить топовый многоядерный проц, то ставить его на дешевую плату, которая даже в характеристиках поддерживает модель проца — поверьте, не стоит.
Работа ПК при высокой температуре
- ПК может работать, но сколько — неизвестно. Это пожалуй единственная причина, по которой стоит добиваться снижения температуры.
- Материнская плата, процессор, сокет, чипы на плате — все это проходит проверку при высоких температурах. Но это не значит что они смогут работать постоянно так.
- Материнка может иметь радиатор над мосфетами, над чипсетом. Под радиатором не сразу устройство, а сперва идет термоинтерфейс, как и под крышкой процессора. Термоинтерфейс — это или специальная прокладка или специальная паста, которая проводит тепло. При постоянной высокой температура свойства термоинтерфейса ухудшаются и температура еще больше увеличивается, что только усугубляет ситуацию.
- Например раньше на материнских платах были не твердотельные конденсаторы, а электролитические. И они были в том числе возле процессора. Часто они вздувались от постоянной высокой температуры и выходили из строя, так как теряли свои свойства (емкость кажется). Но что самое интересное — они могли даже взрываться. А если бы их постоянно обдувал специальный вентилятор — то все было бы нормально. PS: хотя электролитические конденсаторы потом можно было заменить в мастерской.
- При постоянной высокой температуре может деградировать чип, то есть именно деградировать, когда его уже потом не спасти.
Заключение
В основном конечно главное мы выяснили:
- Максимальная температура VRM — 100 градусов.
- Максимально допустимая для работы — 70-80, но желательно непродолжительно.
- Идеальная температура — не выше 50.
Вообще, если вам ваш ПК дорог, то стоит вручную установить обдув VRM (между гнездом процессора и портами платы). На самом деле это не сложно, а снизить температуру и увеличить срок службы материнки — вполне возможно.
Надеюсь информация оказалась полезной, удачи и добра, до новых встреч друзья!
HWinfo VR VCC TEMPERATURE? Is this the same as the VRM temperature? From OC 8600K with ASUS Strix z370 G
Apparently this is a new feature in HWiNFO v6.00: universal VR temperature monitoring for Haswell and later CPUs (source). But I'm not sure how it works yet.
So far it does seem to track what I measure with an external sensor: https://i.imgur.com/aQwt9gv.png.
left – "Vcore VRM" – is from a thermistor placed on the back of board, where the PO1012 low-side FET is on the other side;
right – "VR VCC Temperature (SVID)" – is the new universal VR temperature reading from HWiNFO v6.00;
the board is an ASUS PRIME Z370-A.
Yea it looks like it measures the VRM temperature. I always believed that there has to be a temp sensor on the VRM on My z370 G motherboard because there are options in the bios which you can select either balance per phase current vs temperature. In addition there is an option to disable VRM temperature limit.
vr vcc temperature svid что это такое
Кристалл процессора Core i7 (Nehalem) с другими компонентами системы (северным мостом X58 и модулями памяти DDR3) связывают два внутренних архитектурных блока: интерфейсный блок QuickPath Interconnect (QPI), формирующий на выходе последовательный системный интерфейс для связи с чипсетом (и другими процессорами в многопроцессорных вариантах), и интегрированный в процессор трехканальный контроллер памяти Integrated Memory Controller (IMC), формирующий на выходе интерфейсы для связи с модулями памяти. Кроме того, процессор поддерживает достаточно большое число внешних служебных связей, необходимых выполнения функций управления, контроля, энергосбережения и т. п.
Ввиду того, что Core i7 относятся к новому поколению процессоров, использующему микроархитектуру Nehalem, следует напомнить об основных характерных особенностях его построения:
— врождённая четырёхъядерная архитектура строения, единый процессорный кристалл включает четыре ядра с 256-килобайтным L2 кэшем и общий разделяемый L3 кэш;
— замена процессорной шины Quad Pumped Bus новым последовательным интерфейсом QuickPath с топологией точка-точка, который может использоваться не только для соединения процессора и чипсета, но и для связи процессоров между собой;
— встроенный в процессор контроллер памяти, поддерживающий трёхканальную DDR3 SDRAM, при этом каждый канал способен работать с двумя небуферизованными модулями DIMM;
— поддержка технологии SMT (Simultaneous multithreading), аналогичную памятной технологии Hyper-Threading (благодаря ей каждое ядро Core i7 может исполнять два вычислительных потока одновременно, в результате чего процессор представляется в операционной системе восемью ядрами);
— разделяемый кэш третьего уровня общим объёмом 8 Мбайт;
— встроенный микроконтроллер PCU, независимо управляющий напряжением и частотой каждого из ядер, обладающий возможностями автоматического разгона отдельных ядер при сниженной нагрузке на другие ядра;
— поддержку нового набора инструкций SSE4.2;
— Core i7 производится по технологии с нормами производства 45 нм, состоит из 731 млн. транзисторов и имеет площадь ядра 263 кв.мм.
Микроархитектурные улучшения, сделанные в глубине ядра, не несут в себе революционных изменений в ядре, а в основном обуславливаются оптимизацией давно существующей микроархитектуры Core под работу с технологией SMT. Основные же новации, приходящие в настольные системы вместе с процессорами Core i7, касаются платформы в целом.
Процессоры Core i7 отличаются от своих предшественников поколения Core 2 не только с точки зрения внутреннего содержания, но и снаружи. Так, новые процессоры используют разъём LGA1366, существенно превосходящий по числу контактов и габаритам привычный LGA775. Появление в процессоре новых компонентов изменило и номенклатуру внешних контактов и сигналов (табл. 1)
Увеличение числа контактов обусловлено появлением в процессоре трёхканального контроллера памяти, в то время как ранее в интеловских системах он размещался в северном мосте набора логики.
Поскольку процессоры Core i7 используют совершенно новый интерфейс для связи с северным мостом, они нуждаются в специализированном чипсете (Intel X58 Express). Cеверный мост оборудован и контроллером интерфейса QPI, посредством которого он соединяется с процессором, а также снабжён поддержкой шины DMI, которая традиционно используется в интеловских чипсетах для связи между мостами.
Наименование
Описание
Дифференциальный сигнал синхронизации (на процессор)
Дифференциальный сигнал синхронизации (на ITP)
BPM# [7:0] ввод / вывод.
Указывает, что в системе обнаружена катастрофическая ошибка (исключение «machine check»), и она не может продолжать работу. Процессор определяет это как неисправимую ошибку машины и другие неисправимые ошибки. Поскольку это контакт входа/выхода (I/O), внешним агентам тоже разрешено выдавать эти сигналы, приводящие к обработке процессором особой ситуации при проверке машины.
Компенсация импеданса, должна быть терминирована на системной плате с использованием прецизионного постоянного резистора.
Входные тактирующие дифференциальные сигналы шины QPI, которые соответствуют принимаемым данным.
Входные тактирующие дифференциальные сигналы шины QPI, которые соответствуют передаваемым данным.
Должен быть терминирован на системной плате с использованием прецизионного (постоянного) резистора.
QPI_DRX_DN [19:0] и QPI_DRX_DP [19:0]
QPI_DTX_DN[19:0] и QPI_DTX_DP[19:0]
Должен быть терминирован на системной плате с использованием прецизионного (постоянного) резистора.
Опорное напряжение для DDR3
Определяют банк который предназначен для текущей команды Активации, Чтения, Записи, или команды Предвыборки.
DDR _CAS# Строб адреса столбца.
Разрешение синхронизации банка или режим энергосбережения
Дифференциальные тактовые сигналы для модулей DIMM. Команды и сигналы управления действительны по нарастающему фронту импульсов.
Каждый сигнал выбирает один канал как цель команды и адреса.
DDR _DQ [63:0] биты шины данных DDR3.
Мультиплексированная шина адреса. По этим линиям передается адрес строки при чтении или записи, и адрес столбца. Кроме того эти линии используется для установки параметров в регистрах конфигурации DRAM.
Обеспечивает различные комбинации сопротивления терминации в активных и неактивных модулях DIMM, когда данные прочитаны или записаны.
Строб адреса строки
Текущий смысл зависит от VRD11.1
Наименование
Описание
PECI (Platform Environment Control Interface –интерфейс управления средой платформы) – последовательный служебный интерфейс к процессору.
используется, прежде всего, для управления тепловым режимом, системой питания и для контроля ошибок. Подробнее об электрических спецификациях, протоколах и функциях PECI можно найти в документе Platform Environment Control Interface Specification.
процессорный выход, используемый средствами отладки.
используется средствами отладки, чтобы запросить операции отладки на процессоре.
SKTOCC# (Гнездо занято) сигнал активен если процессор установлен в сокете. У этого сигнала нет никакой связи с кристаллом процессора. Проектировщики системы могут использовать этот сигнал чтобы определить, присутствует ли процессор.
Для правильной работы процессора TESTLOW должен быть подключен к земле через резистор.
TMS (Test Mode Select – выбор режима тестирования) является специальным сигналом интерфейса JTAG, формируемым специальной отладочной аппаратурой для порта ТАР.
TRST# (Test Reset – сброс тестирования) сбрасывает логику порта TAP. TRST# должен быть переведен в низкий уровень при сбросе питания.
Питание для ядра процессора.
VCC_SENSE и VSS_SENSE обеспечивают изолированное, низкоимпедансное подключение ядра процессора к напряжению питания и земле. Они могут быть использованы для обнаружения или измерения напряжения на кристалле процессора.
VCCPLL – отдельное питание PLL.
Наименование
Описание
VID [7:0] (идентификатор напряжения) – эти выходные сигналы используются, чтобы поддержки автоматического выбора напряжения питания источника (VCC). Напряжение для формирования этих сигналов должно быть подано до момента включения VR источника Vcc процессора. И наоборот, выход VR должен быть заблокирован до поставки напряжения для сигналов VID. Сигналы VID необходимы для поддержки процессов изменения напряжения.VR должен обеспечивать напряжение или отключиться самостоятельно.
VID6 и VID7 должны быть связаны с Vss через резисторы 1 кОм
(эти значения защелкиваются по переднему фронту сигнала VTTPWRGOOD).
Напряжение питания для аналоговой части интегрированного контроллера памяти, QPI и общего кэша.
Напряжение питания для цифровой части интегрированного контроллера памяти, QPI и общего кэша.
VTT_VID [2:4] (идентификатор VTTVoltage) используются для поддержания автоматического выбора напряжений электропитания (VTT).
VTT_SENSE и VSS_SENSE_VTT обеспечивают изолированный, низкий импеданс связи с напряжением VTT и «землей» процессора. Они могут использовании для измерения
напряжения на кристалле.
Этот сигнал означает для процессора, что электропитание VTT является устойчивым и в пределах спецификаций. Сигнал имеет низкий уровень напряжения со времени включения электропитания, пока оно не достигло номинального значения указанного в спецификации тогда сигнал должен перейти к высокому уровню.
Входные и выходные сигналы процессоров семейства Core i7 имеют большое разнообразие рабочих уровней сигналов, протоколов обмена, схем согласования и «гашения» сигналов скоростных линий. В различных полупроводниковых цифровых микросхемах и процессорах широко используются логические вентили на TTL (ТТЛ) и CMOS (КМОП) структурах. Внутри сложных микросхем применяются и другие типы ячеек, но они обычно обрамляются внешними схемами с параметрами ТТL- или CMOS-вентилей. Логические элементы CMOS отличаются от ТТL большим размахом сигнала (низкий уровень ближе к нулю, высокий — к напряжению питания), малыми входными токами (почти нулевыми в статике, в динамике — обусловленными паразитной емкостью) и малым потреблением, однако их быстродействие несколько ниже. В отличие от ТТL, микросхемы CMOS допускают более широкий диапазон питающих напряжений. Микросхемы ТТL и CMOS взаимно стыкуются, хотя вход CMOS требует более высокого уровня логической единицы, а выход CMOS из-за невысокого выходного тока можно нагружать лишь одним ТТL-входом. Современные схемы CMOS по параметрам приближаются к ТТL и хорошо стыкуются с ними. Схемы CMOS имеют те же типы выводов, но вместо выхода с открытым коллектором у них присутствует выход с открытым стоком (что по логике работы одно и то же).
Независимые блоки рекалибровки синхронизации приемо-передатчиков, содержащие последовательные цепи обратной связи, постоянно отслеживают различные факторы девиации синхросигнала, «перестраивая» его, и поддерживают режим задержки «линковки» приемных (RX) и передающих (TX) каналов с интервалом, менее чем 5 нс.
Строго однонаправленное соединение по топологии типа «точка-точка», передающие множественные биты, применение действительно реальной дифференциальной логики, где используется два вывода для приемника и передатчика на один сигнал. Независимые источники передающих (CFM-аналог) и приемных (CTM-аналог) синхросигналов не обязательно должны генерировать строго одинаковые синхроимпульсы, однако они должны использовать как можно меньший временной «разброс». Терминирование, ставшее обязательным в современных ВЧ-линиях, в данном случае имеет внутреннюю программируемую реализацию посредством ранее упомянутого внешнего опорного резистора.
Gunning Transeiver Logic – это технология низковольтной высокочастотной системной шины, разработанная фирмой Intel еще для процессоров серии Pentium. Улучшенная версия GTL для процессоров Pentium II получила название GTL+. Дальнейшие усовершенствования привели к появлению спецификации AGTL+, предназначенной для процессоров Pentium III/4 и далее. Все варианты шины полностью совместимы между собой. Все проводники системной шины замкнуты c обоих концов на резисторы, играющие роль терминаторов. Логической единице на шине соответствует уровень 1,5 Вольта, низкий уровень выходного напряжения не должен превышать 0,6 Вольта. При обмене данными процессор генерирует сигнал Reference, составляющий примерно 2/3 от уровня логической единицы на шине, который инициирует передачу (прием) данных в соответствующие буфера. Такой же сигнал могут инициировать другие устройства подключенные к системной шине. При этом гарантируется одновременное поступление данных, независимо от длины проводников. Такое решение позволило значительно упростить топологию системной платы. Уменьшилось влияние конденсаторной емкости проводников, наведенной электромагнитной индукции. Стала возможной надежная работа шины на частотах от 150 МГц и значительно выше. Схемы передатчиков сигналов этого интерфейса имеют выходы типа «открытый коллектор», а входные цепи приемников являются дифференциальными, сигнал воспринимается относительно опорного уровня на входе VREF.
Переход на современные сигнальные протоколы сопряжен с большими проблемами технологического характера. Пониженное напряжение питания означает переход на другую норму производства кристаллов, необходима специализированная аппаратура для контроля над операциями, осциллографы для снятия тайминговых характеристик новых чипов и специальные имитаторы критических условий.
В табл. 2 сигналы процессора Core i7 сгруппированы по типом выполняемых функций, технологий и спецификаций. Буферный тип указывает технологии которая используется для передачи сигналов. Есть некоторые сигналы, которые не имеют ODT и должны быть терминированы на плате. Сигналы, которые имеют ODT, перечислены в табл. 3.
Vr vcc temperature svid что это такое
Intel® motherboards are equipped with temperature sensors. The sensors work with the fan controllers to regulate the temperature of various hardware components. The components that the sensors monitor include memory (RAM), processor (CPU), platform control hub (PCH), and voltage regulator (VR). The Temperatures tab in Visual BIOS provides a set of configuration options that define the behavior of each component sensor. Figure 2.28 depicts an example of what the temperature settings may look like.
Figure 2.28: Use this page to modify system temperature settings
Processor
The processor is the brain of the computer. Like a human body, the computer cannot function without the processor. It is important to keep the processor cool in order to ensure a long life. The processor’s sensor monitors the temperature of the system processor. This sensor can be controlled by a set of options. Figure 2.29 displays the options.
Figure 2.29: Use this section to modify processor temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the processor’s temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
The process control hub (PCH) works with the system processor to manage various I/O components in the system. The hardware components include both USB and SATA controllers. Traditionally, the PCH does not have a fan directly attached to its heat sink. Therefore, the sensor monitors the area around the PCH. This sensor can be controlled by a set of options (Figure 2.30).
Figure 2.30: Use this section to modify chipset temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the PCH area temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
Memory
Random Access Memory (RAM) is second to the processor in the list of most important hardware components in a computer. RAM acts as a sort of “scratchpad” that all software, including the onboard BIOS, require in order to function. For example, when a file is opened in a document editor, its contents are loaded into RAM. Likewise, when an application is started, its executable instructions are also loaded into RAM. A temperature sensor is located near the memory slots on the motherboard that monitor the temperature of the surrounding components. This sensor can be controlled by a set of options (Figure 2.31).
Figure 2.31: Use this section to modify memory temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the memory area temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
The voltage regulator (VR) is responsible for regulating the power lanes that feed power to the different hardware components on the motherboard. The temperature sensor is located in the VR area that monitors the temperature of the surrounding components. This sensor can be controlled by a set of options (Figure 2.32).
Figure 2.32: Use this section to modify voltage regulator temperature sensor settings
Ø Over-Temperature Threshold defines the temperature that will cause temperature monitoring software to generate an alert.
Ø Control Temperature defines the VR area temperature that the fan control subsystem attempts to maintain.
Ø All-On Temperature defines the temperature at which the fan control subsystem will increase all fans that are associated with this temperature sensor to maximum speed.
Ø Responsiveness defines how quickly all fans that are associated with this temperature sensor react to changes in temperature.
Ø Damping helps reduce oscillation in fan speed response. Higher settings will generate fewer changes, but could slow the rate of temperature response.
990x.top
Простой компьютерный блог для души)
Максимальная температура VRM материнской платы
Приветствую друзья. Поговорим немного о температуре материнской плате, а точнее о температуре VRM, ведь сама материнка греться не может — только компоненты на ней (чипы).
Максимальная температура VRM материнской платы
Температура VRM при обычной работе ПК нежелательно чтобы повышалась более чем на 50 градусов.
Максимально допустимая температура — 100 градусов, после которой могут быть необратимые последствия. Но и 100 градусов при продолжительной работе — тоже приведут к проблеме.
В играх она может достигать 70, если выше — то уже плохо, во-первых выше 90 может быть деградация не самого качественного текстолита, выше 100 — могут плавиться медные дорожки, но это еще зависит от платы. В любом случае высокая температура — зло.
Посмотреть температуру VRM лучше всего в программе AIDA64:
Но AIDA64 может и не показывать датчик VRM — это еще зависит от самой материнской платы. Возможно если нет датчика, то стоит обратить внимание на температуру системной платы (а ее также можно посмотреть в BIOS).
В основном греются только мосфеты, и при это могут греться так, что прикоснуться нельзя. В таком случае — нужен обдув, иначе это просто уменьшит срок службы платы.
VRM — что это?
Это несколько модулей, которые обеспечивают преобразование 12 вольт от блока питания в куда меньшее напряжение, которое нужно процессору.
Кстати процессору нужно всего 1.5 вольт, но чтобы они были стабильные, без скачков и перепадов.
VRM располагается слева от сокета (или над ним).
Вообще VRM — важная вещь, эта система питает процессор, обеспечивает его постоянным током, который должен быть качественным. И в принципе все хорошо — простые процессоры, офисные, которые имеют 2 или 4 ядра — особо нетребовательные. Но если брать топовый процессор, то если его установить на плату со слабым VRM — при максимальных нагрузках могут быть вылеты, выключения ПК.
Вообще VRM — это не одно какое-то устройство, а несколько:
Вот пример, когда элементы VRM имеют качественное охлаждение + радиатор есть на чипсете:
Разумеется такие платы стоят дороже, но если вы собираетесь разгонять процессор — то не стоит жалеть денег на плату. Даже если вы будете ставить топовый многоядерный проц, то ставить его на дешевую плату, которая даже в характеристиках поддерживает модель проца — поверьте, не стоит.
Работа ПК при высокой температуре
Заключение
В основном конечно главное мы выяснили:
Вообще, если вам ваш ПК дорог, то стоит вручную установить обдув VRM (между гнездом процессора и портами платы). На самом деле это не сложно, а снизить температуру и увеличить срок службы материнки — вполне возможно.
Надеюсь информация оказалась полезной, удачи и добра, до новых встреч друзья!
Какая температура считается нормальной для всех компонентов компьютера и что делать с перегревом?
Содержание
Содержание
Температура компонентов компьютера является важным фактором стабильной работы системы. Перегрев может вызывать зависание, подтормаживание и отключение компьютера во время игры или при другой продолжительной нагрузке. Серьезный перегрев компонентов напрямую отражается не только на производительности, но и на сроке их службы. Тогда какая температура будет оптимальной для вашего компьютера, а когда пора беспокоиться?
Согласно правилу «10 градусов», скорость старения увеличивается вдвое при увеличении температуры на 10 градусов. Именно поэтому нужно периодически следить за температурными показателями комплектующих, особенно в летнее время.
Процессор
Самый верный способ узнать максимально допустимую температуру процессора — посмотреть спецификацию к устройству на сайте производителя конкретно вашего изделия. В ней помимо перечисления всех характеристик будет указана и максимальная рабочая температура.
Не стоит думать, что все нормально, если у вас стабильные 90 °C при максимально допустимых 95-100 °C. Оптимально температура не должна превышать 60-70 °C во время нагрузки (игры, рендеринга), если только это не какое-то специальное тестирование на стабильность с чрезмерной нагрузкой, которая в повседневной жизни никогда не встретится.
Сейчас у большинства устройств есть технология автоматического повышения тактовой частоты (Turbo Boost).
Например, если базовая частота AMD Ryzen 3700X составляет 3.6 ГГц, то в режиме Turbo Boost он может работать на частоте 4.4 ГГц при соблюдении определенных условий. Одно из этих условий — температура.
При превышении оптимальной температуры возможно незначительное снижение максимальной частоты работы. В момент, когда температура приближается к максимально допустимой, частота понижается уже сильнее. Это в конечном счете оказывает влияние на производительность, именно поэтому оптимальной температурой принято считать 60-70 °C.
В эти пределы по температуре и заложена максимальная производительность для устройства.
Температура процессора напрямую связана с системой охлаждения, поэтому, если вы берете высокопроизводительный процессора как AMD Ryzen 3900X или 10900к, на системе охлаждения лучше не экономить.
Видеокарта
С видеокартами все примерно точно так же. Только помимо информации в спецификации, можно посмотреть зашитые в Bios устройства максимальные значения температуры.
Для обоих производителей, в зависимости от серии видеокарт, максимальная температура находится пределах от 89 до 105 °C.
Посмотреть их можно с помощью программы GPU-Z или AIDA64.
Данную информацию так же можно посмотреть на сайте https://www.techpowerup.com/vgabios/
Помимо температуры самого ядра важное значение имеет и температура других компонентов видеокарты: видеопамяти и цепей питания.
Есть даже тестирование видеокарт AMD RX 5700XT от разных производителей, где проводились замеры различных компонентов на видеокарте.
Как можно видеть, именно память имеет наибольшую температуру во время игры. Подобный нагрев чипов памяти присутствует не только у видеокарт AMD 5000 серии, но и у видеокарт Nvidia c использованием памяти типа GDDR6.
Как и у процессоров, температура оказывает прямое влияние на максимальную частоту во время работы. Чем температура выше, тем ниже будет максимальный Boost. Именно поэтому нужно уделять внимание системе охлаждения при выборе видеокарты, так как во время игры именно она всегда загружена на 100 %.
Материнская плата
Сама материнская плата как таковая не греется, на ней греются определенные компоненты, отвечающие за питание процессора, цепи питания (VRM). В основном это происходит из-за не совсем корректного выбора материнской платы и процессора.
Материнские платы рассчитаны на процессоры с разным уровнем энергопотребления. В случае, когда в материнскую плату начального уровня устанавливается топовый процессор, во время продолжительной нагрузки возможен перегрев цепей питания. В итоге это приведет либо к сбросу тактовой частоты процессора, либо к перезагрузке или выключению компьютера.
Также на перегрев зоны VRM влияет система охлаждения процессора. Если с воздушными кулерами, которые частично обдувают околосокетное пространство, температура находится в переделах 50-60 °C, то с использованием жидкостных систем охлаждения температура будет уже значительно выше.
В случае с некоторыми материнскими плата AMD на X570 чипсете, во время продолжительной игры возможен перегрев южного моста, из-за не лучшей компоновки.
Предел температуры для системы питания материнской платы по большому счету находится в том же диапазоне — 90–125 °C. Также при повышении температуры уменьшается КПД, при уменьшении КПД увеличиваются потери мощности, и, как следствие, растет температура. Получается замкнутый круг: чем больше температура — тем ниже КПД, что еще больше увеличивает температуру. Более подробно узнать эту информацию можно из Datasheet использованных компонентов на вашей материнской плате.
Память
Память типа DDR4 без учета разгона сейчас практически не греется, и даже в режиме стресс тестирования ее температура находится в пределах 40–45 °C. Перегрев памяти уменьшает стабильность системы, возможна перезагрузка и ошибки в приложениях, играх.
Для мониторинга за температурой компонентов системы существует множество различных программ.
Если речь идет о процессорах, то производители выпустили специальные утилиты для своих продуктов. У Intel это Intel Extreme Tuning Utility, у AMD Ryzen Master Utility. В них помимо мониторинга температуры есть возможность для настройки напряжения и частоты работы. Если все же решитесь на разгон процессора, лучше это делать напрямую из Bios материнской платы.
Есть также комплексные программы мониторинга за температурой компьютера. Одной из лучших, на мой взгляд, является HWinfo.
Чем чреват перегрев — ускоренная деградация чипов, возможные ошибки
Перегрев компонентов в первую очередь чреват падением производительности и нестабильностью работы системы. Но это далеко не все последствия.
При работе на повышенных температурах увеличивается эффект воздействия электромиграции, что значительно ускоряет процесс деградации компонентов системы.
Эффект электромиграции связан с переносом вещества в проводнике при прохождении тока высокой плотности. Вследствие этого происходит диффузионное перемещение ионов. Сам процесс идет постоянно и крайне медленно, но при увеличении напряжения и под воздействием высокой температуры значительно ускоряется.
Под воздействием электрического поля и повышенной температуры происходит интенсивный перенос веществ вместе с ионами. В результате появляются обедненные веществом зоны (пустоты), сопротивление и плотность тока в этой зоне существенно возрастают, что приводит к еще большему нагреву этого участка. Эффект электромиграции может привести к частичному или полному разрушению проводника под воздействием температуры или из-за полного размытия металла.
Это уменьшает общий ресурс работы и в дальнейшем может привести к уменьшению максимально стабильной рабочей частоты или полному выходу устройства из строя и прогару. Именно высокая температура ускоряет процесс старения компьютерных чипов.
Как бороться с перегревом
Сейчас, особенно в летнюю пору, можно попробовать открыть боковую створку корпуса или заняться оптимизацией построения воздушных потоков внутри него.
Также в борьбе с высокой температурой может помочь чистка от пыли и замена термопасты, в некоторых случаях будет достаточно и этого.
И, пожалуй, самый радикальный и дорогостоящий способ снижения температуры — замена системы охлаждения CPU и GPU.
На мой взгляд, самый эффективный способ без затрат уменьшить нагрев и повысить производительность это Downvolting (даунвольтинг).
Даунвольтинг — это уменьшение рабочего напряжения, подаваемого на процессор или видеокарту во время работы. Это ведет к уменьшению энергопотребления и, как следствие, к уменьшению температуры.
Для видеокарт NVIDIA даунвольтинг осуществляется с использованием программы MSI Afterburner.
В ней вы для каждого значения частоты подбираете собственное напряжение. Он еще называется даунвольтинг по курве (кривой).
Таким способом можно уменьшить потребление видеокарты примерно на 20-30 %, что положительно отразится на рабочей температуре и тактовой частоте.
На первый взгляд разница между температурой не столь значительная и составляет всего 8-9°C, однако вместе с температурой понизилась и скорость оборотов вентилятора, примерно на 500. В конечном счете за счет даунвольтинга мы снижаем не только температуру, но и шум системы охлаждения. Если же вы ярый фанат низких температур, отрегулировав кривую оборотов вентилятора, можно добиться значительно большего падения температуры.
Вопреки бытующим заблуждениям, даунвольтинг не оказывает какого-либо отрицательного влияния на производительность видеокарты.
Default Voltage
Downvolting
Для даунвольтинга видеокарты AMD не потребуется даже отдельная утилита — все уже реализовано производителем в настройках драйвера.
Даунвольтинг не только уменьшает рабочую температуру, но и увеличивает производительность за счет того, что у всех устройств заложено ограничение по потребляемой энергии.
В случае с видеокартами AMD, уменьшение рабочего напряжения уменьшает энергопотребление и дает возможность видеокарте функционировать на заявленных частотах без упора в лимит энергопотребления, не прибегая к его расширению.
У данной видеокарты он составляет 160 Вт, что и можно наблюдать на первом графике.
Default Voltage
Downvolting
С процессорами дела обстоят несколько сложнее, однако они также поддаются даунвольтингу. Но это уже совсем другая история.
Существуют максимальные показатели рабочих температур. Обычно это 90–105 °C, установленные производителем. Как минимум, нужно стараться не превышать эти значения, однако оптимально температура компонентов компьютера не должна превышать 60–70 °C во время повседневных нагрузок. Тем самым вы будете иметь максимальную производительность системы и долгий срок службы, а так же практически бесшумный режим работы системы охлаждения. Именно поэтому не стоит сильно экономить на системе охлаждения компьютера.