Косинус это проекция на какую ось
Перейти к содержимому

Косинус это проекция на какую ось

  • автор:

 

9. Проекция вектора на ось. Направляющие косинусы вектора.

Проекцией вектора на ось называется вектор, который получается в результате перемножения скалярной проекции вектора на эту ось и единичного вектора этой оси. Например, если аxскалярная проекция вектора а на ось X, то аx·i — его векторная проекция на эту ось. Обозначим векторную проекцию также, как и сам вектор, но с индексом той оси на которую вектор проектируется. Так, векторную проекцию вектора а на ось Х обозначим аx (жирная буква, обозначающая вектор и нижний индекс названия оси) или (нежирная буква, обозначающая вектор, но со стрелкой наверху (!) и нижний индекс названия оси). Скалярной проекцией вектора на ось называется число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Обычно вместо выражения скалярная проекция говорят просто – проекция. Проекция обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектора, то его проекция обозначается аx. При проектировании этого же вектора на другую ось, если ось Y , его проекция будет обозначаться аy . Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть аx = хк − xн. Проекция вектора на ось — это число. Причем, проекция может быть положительной, если величина хк больше величины хн, отрицательной, если величина хк меньше величины хн и равной нулю, если хк равно хн . Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью. Из рисунка видно, что аx = а Cos α то есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора. Если угол острый, то Cos α > 0 и аx > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна. Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу — отрицательными. Однако, поскольку косинус – функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против. Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

10. Линейные операции над векторами и их основные свойства. Линейные операции над векторами Сложение векторов

Пусть даны два вектора и . Приложим вектор к точке (концу вектора ) и получим вектор (рис.1.7,а; здесь и далее равные векторы отмечены одинаковыми засечками). Вектор называется суммой векторов и и обозначается . Это нахождение суммы называется правилом треугольника.

Сумму двух неколлинеарных векторов и можно найти по правилу параллелограмма. Для этого откладываем от любой точки векторы и , а затем строим параллелограмм (рис. 1.7,6). Диагональ параллелограмма определяет сумму:

Для нахождения суммы нескольких векторов можно построить ломаную из равных им векторов. Тогда замыкающий вектор, соединяющий начало первого вектора ломаной с концом последнего ее вектора, равен сумме всех векторов ломаной. На рис.1.7,в изображена сумма четырех векторов . Таким способом (правило ломаной) можно сложить любое конечное число векторов. Заметим, что сумма векторов не зависит от точек приложения слагаемых и от порядка суммирования. Например, «выстраивая цепочку» векторов для суммы в виде , получим вектор, равный вектору . Если ломаная получилась замкнутой, то сумма равна нулевому вектору.

Косинус это проекция на какую ось

Функция y = cos x, её свойства и график

Развертка ординаты движения точки по числовой окружности в функцию от угла

В результате получаем график y=cosx для любого \(x\in\mathbb \).
Косинусоида

п.2. Свойства функции y=cosx

Пример 1. Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:
Пример 1
a) \(\left[\frac\pi6; \frac\right]\) $$ y_ =cos\left(\frac\right)=-\frac>,\ \ y_ =cos\left(\frac\pi6\right)=\frac> $$ б) \(\left[\frac; \frac\right]\) $$ y_ =cos(\pi)=-1,\ \ y_ =cos\left(\frac\right)=\frac12 $$

Пример 2. Решите уравнение графически:
a) \(cosx=\frac\pi2-x\)
Пример 2a
Один корень: \(x=\frac\pi2\)

б) \(cosx-x=1\)
\(cosx=x+1\)
Пример 2б
Один корень: x = 0

в) \(cosx-x^2=1\)
\(cosx=x^2+1\)
Пример 2в
Один корень: x = 0

г*) \(cosx-x^2+\frac=0\)
\(cosx=x^2-\frac\)
\(y=x^2-\frac\) – парабола ветками вверх, с осью симметрии \(x_0=0\) (ось OY) и вершиной \(\left(0; -\frac\right)\) (см. §29 справочника для 8 класса)
Пример 2г
Два корня: \(x_=\pm\frac\pi2\)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx,\ \ y=-cosx,\ \ y=2cosx,\ \ y=cosx-2 $$
Пример 3
\(y=-cosx\) – отражение исходной функции \(y=cosx\) относительно оси OX. Область значений \(y\in[-1;1]\).
\(y=2cosx\) – исходная функция растягивается в 2 раза по оси OY. Область значений \(y\in[-2;2]\).
\(y=cosx-2\) — исходная функция опускается вниз на 2. Область значений \(y\in[-3;-1]\).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx,\ \ y=cos2x,\ \ y=cos\frac $$
Пример 4
Амплитуда колебаний у всех трёх функций одинакова, область значений \(y\in[-1;1]\).
Множитель под косинусом изменяет период колебаний.
\(y=cosx\) – главная арка косинуса соответствует отрезку \(-\frac\pi2\leq x\leq\frac\pi2\)
\(y=cos2x\) — период уменьшается в 2 раза, главная арка укладывается в отрезок \(-\frac\pi4\leq x\leq\frac\pi4\).
\(y=cos\frac \) — период увеличивается в 2 раза, главная арка растягивается в отрезок \(-\pi \leq x\leq \pi\).

Косинус угла между вектором и осью

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

 

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Косинус угла между вектором и осью

Проекция вектора на ось есть скалярная величина, равная произведению модуля проектируемого вектора на косинус угла между положительными направлениями оси и вектора (см. рисунок).

Проекция вектора на ось обозначается через al или , а угол между осью и вектором будем обозначать так: . Таким образом,

(2)

Если — углы, образованные вектором с координатными осями Ox, Oy и Oz прямоугольной системы координат, то проекции вектора на координатные оси будут равны

(3)

В дальнейшем предполагается, что система координат — прямоугольная.

Модуль вектора через его проекции на оси прямоугольной системы координат вычисляется по формуле

(4)

т. е. модуль вектора равен арифметическому значению квадратного корня из суммы квадратов его проекций.

Вектор равен нулю, если все три его проекции равны нулю (этим положением пользуются, например, в механике при выводе необходимых и достаточных условий равновесия тела под действием системы сил, проходящих через одну точку).

Проекция вектора на ось. Скалярное произведение векторов

По этой ссылке вы найдёте полный курс лекций по математике:

Рассмотрим на оси / ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси I называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси и со знаком «-», если эти направления противоположны. Рассмотрим теперь произвольный вектор , определяемый связанным вектором АВ.

Опуская из его начала и конца перпендикуляры на заданную ось I, построим на ней направленный отрезок CD (рис. 24). Определение. Проекцией вектора АВ на ось I называется величина направленного отрезка CD, построенного указанным выше способом. Основные свойства проекций 1. Проекция вектора АВ на какую-либо ось I равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25) 2.

Проекция суммы векторов на какую-либо ось J равна сумме проекций векторов на ту же ось. Например, (рис.26). §5. Скалярное произведение векторов Пусть имеем два вектора а и I». Определение. Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а,Ь) и определяемое равенством где или в иной записи (а, !>), есть угол между векторами а и b (рис. 27 а).

Заметив, что (b| cosy> есть проекция вектора b на направление вектора а, можем написать (рис. 27 6) и,аналогично, (рис.27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или Ь — нулевой, будем считать, что Проекция вектора на ось.

Скалярное произведение векторов 5.1.

Свойства скалярного произведения 1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и Ь ортогональны, a J.h. Это следует из формулы (1), определяющей скалярное произведение. Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так: 2.

Скалярное произведение коммутативно: Справедливость утверждении вытекает из формулы (I), если учесть четность функции 3. Скалярное произведение обладает распределительным свойством относительно сложения: 4 Действительно, 4. Числовой множитель Л можно выносить за знак скалярного произведения « Действительно, пусть А > 0. Тогда поскольку при A > 0 углы (aj>) и (Аа, h) равны (рис.28). Аналогично рассматривается случай . При 0 свойство 4 очевидно. Замечание. В обшем случае ). 5.2.

Возможно вам будут полезны данные страницы:

Скалярное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в ортонор миро ванном базисе Рассмотрим скалярное произведение векторов и и Ь: Проекция вектора на ось. Скалярное произведение векторов Пользуясь распределительным свойством скалярного произведения, находим Учитывая, что Тоесть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат. Пример.

Найти скалярное произведение векторов

Скалярное произведение вектора на себя называется скалярным квадратом: Применяя формулу (4) при b =а, найдем С другой стороны, так что из (5) следует, что — в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат. 5.3. Косинус угла между векторами. Направляющие косинусы Согласно определению где —угол между векторами а и Ь. Из этой формулы получаем (предполагается, что векторы а и b — ненулевые). Пусть .

Тогда формула (7) примет следующий вид cos Пример. Найти угол между векторами Пользуясь формулой (8), находом Пусть b = i, т.е. b = . Тогда для всякого вектора О имеем Проекция вектора на ось. Скалярное произведение векторов или, в координатной записи, где q есть угол, образованный вектором а с осью Ох.

Аналогично получаем формулы Формулы (9)-(l 1) определяют направляющие косинусы вектора а, т.е. косинусы углов, образуемых вектором а с осями координат (рис. 29). Пример. Найти координаты единичного вектора . По условию |п°| = I. Пусть Тогда (n°,k)=sz = cos 7. Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат: Проекция вектора на ось. Скалярное произведение векторов Отсюда получаем Пример. Пусть единичный вектор п° ортогонален оси г: (рис.30). Тогда его координаты х и у соответственно равны Тем самым.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Косинус это проекция на какую ось

§ 3. Проекции вектора на оси координат

1. Нахождение проекций геометрически.

— вектор
— проекция вектора на ось OX
— проекция вектора на ось OY

Определение 1. Проекцией вектора на какую-либо ось координат называется взятое со знаком "плюс" или "минус" число, соответствующее длине отрезка, расположенного между основаниями перпендикуляров, опущенных из начала и конца вектора на ось координат.

Знак проекции определяется так. Если при движении вдоль оси координат происходит перемещение от точки проекции начала вектора к точке проекции конца вектора в положительном направлении оси, то проекция вектора считается положительной. Если же — противоположно оси, то проекция считается отрицательной.

По рисунку видно, что если вектор ориентирован как-то противоположно оси координат, то его проекция на эту ось отрицательна. Если вектор ориентирован как-то в положительном направлении оси координат, то его проекция на эту ось положительна.

Если вектор перпендикулярен оси координат, то его проекция на эту ось равна нулю.
Если вектор сонаправлен с осью, то его проекция на эту ось равна модулю вектора.
Если вектор противоположно направлен оси координат, то его проекция на эту ось по абсолютной величине равна модулю вектора, взятому со знаком минус.

2. Наиболее общее определение проекции.


Из прямоугольного треугольника ABD: .

Определение 2. Проекцией вектора на какую-либо ось координат называется число, равное произведению модуля вектора и косинуса угла, образованного вектором с положительным направлением оси координат.

Знак проекции определяется знаком косинуса угла, образованного вектором с положительным направлением оси.
Если угол острый, то косинус имеет положительный знак, и проекции — положительны. Для тупых углов косинус имеет отрицательный знак, поэтому в таких случаях проекции на ось отрицательны.
— поэтому для векторов, перпендикулярных к оси, проекция равна нулю.

Никакую часть этого материала ни в каких целях, включая образовательные и научные, нельзя без письменного разрешения владельца авторских прав дублировать в сети Интернет и воспроизводить в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая запись на магнитный или электронный носитель, вывод на печать, фотокопирование.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *