Периодические десятичные дроби
Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.
Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.
- Значащая часть состоит из бесконечного количества цифр;
- Через определенные интервалы цифры в значащей части повторяются.
Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:
Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.
Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.
Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.
Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.
Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.
Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».
Переход к периодической десятичной дроби
Рассмотрим обыкновенную дробь Разложим ее знаменатель на простые множители. Возможны два варианта:
- В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным — см. урок «Десятичные дроби». Такие нас не интересуют;
- В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.
Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».
При этом будет происходить следующее:
- Сначала разделится целая часть, если она есть;
- Возможно, будет несколько чисел после десятичной точки;
- Через некоторое время цифры начнут повторяться.
Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.
Задача. Переведите обыкновенные дроби в периодические десятичные:
Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:
Как видим, остатки повторяются. Запишем дробь в «правильном» виде:
В итоге получается дробь:
Записываем в нормальном виде:
Переход от периодической десятичной дроби к обыкновенной
Рассмотрим периодическую десятичную дробь Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:
- Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет
- Найдите значение выражения Это равносильно сдвигу десятичной точки на полный период вправо — см. урок «Умножение и деление десятичных дробей»;
- Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь;
- В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.
- 9,(6);
- 32,(39);
- 0,30(5);
- 0,(2475).
Работаем с первой дробью:
В скобках содержится лишь одна цифра, поэтому период Далее умножаем эту дробь Имеем:
10 X = 10 · 9,6666 . = 96,666 .
Вычитаем исходную дробь и решаем уравнение:
10 X − X = 96,666 . − 9,666 . = 96 − 9 = 87;
9 X = 87;
X = 87/9 = 29/3.
Теперь разберемся со второй дробью. Итак,
Период k = 2, поэтому умножаем все
100 X = 100 · 32,393939 . = 3239,3939 .
Снова вычитаем исходную дробь и решаем уравнение:
100 X − X =
99 X = 3207;
X = 3207/99 = 1069/33.
Приступаем к третьей дроби: Схема та же самая, поэтому я просто приведу выкладки:
Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;
10 X = 10 · 0,30555 . = 3,05555 .
10 X − X =
9 X = 11/4;
X = (11/4) : 9 = 11/36.
Наконец, последняя дробь: Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:
k = 4 ⇒
10 000 X = 10 000 · 0,2475 2475 = 2475,2475 .
10 000 X − X = 2475,2475 . − 0,2475 2475 . = 2475;
9999 X = 2475;
X = 2475 : 9999 = 25/101.
Перевод десятичной дроби в обыкновенную и наоборот: правило, примеры
Бывает, что для удобства расчетов нужно перевести обыкновенную дробь в десятичную и наоборот. О том, как это делать, мы поговорим в данной статье. Разберем правила перевода обыкновенных дробей в десятичные и обратно, а также приведем примеры.
Перевод обыкновенных дробей в десятичные
Мы будем рассматривать перевод обыкновенных дробей в десятичные, придерживаясь определенной последовательности. Во первых, рассмотрим, как в десятичные переводятся обыкновенные дроби со знаменателем, кратным 10: 10, 100, 1000 и т.д.Дроби с такими знаменателями, по сути, являются, более громоздкой записью десятичных дробей.
Далее мы рассмотрим, как переводить в десятичные дроби обыкновенные дроби с любым, не только кратным 10, знаменателем. Отметим, что при обращении обыкновенных дробей в десятичные получаются не только конечные десятичные, но и бесконечные периодические десятичные дроби.
Перевод обыкновенных дробей со знаменателями 10, 100, 1000 и т.д. в десятичные дроби
Первым делом, скажем, что некоторые дроби нуждаются в определенной подготовке перед обращением в десятичный вид. В чем она заключается? Перед цифрой, стоящей в числителе, необходимо дописать столько нулей, чтобы количество цифр числителя стало равно числу нулей в знаменателе. Например, для дроби 3100 число 0 необходимо один раз дописать слева от 3 в числителе. Дробь 610, согласно изложенному выше правилу, не нуждается в доработке.
Рассмотрим еще один пример, после чего сформулируем правило, которым особенно удобно пользоваться на первых порах, пока опыта в обращении дробей не так много. Так, дробь 1610000 после дописывания нулей в числителе будет иметь вид 001510000.
Как перевести обыкновенную дробь со знаменателем 10, 100, 1000 и т.д. в десятичную?
Правило перевода обыкновенных правильных дробей в десятичные
- Записываем 0 и ставим после него запятую.
- Записываем число из числителя, которое получилось после дописывания нулей.
Теперь перейдем к примерам.
Пример 1. Перевод обыкновенных дробей в десятичные
Переведем обыкновенную дробь 39 100 в десятичную.
Сначала смотрим на дробь и видим, что никаких подготовительных действий проводить не нужно — количество цифр в числителе совпадает с количеством нулей в знаменателе.
Следуя правилу, записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 39 .
Разберем решение еще одного примера по этой теме.
Пример 2. Перевод обыкновенных дробей в десятичные
Запишем дробь 105 10000000 в виде десятичной дроби.
Количество нулей в знаменателе равно 7 , а в числителе только три цифры. Допишем перед числом в числителе еще 4 нуля:
Теперь записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 0000105 .
Рассмотренные во всех примерах дроби — обыкновенные правильные дроби. Но как перевести неправильную обыкновенную дробь в десятичную? Сразу скажем, что необходимость в подготовке с дописыванием нулей для таких дробей отпадает. Сформулируем правило.
Правило перевода обыкновенных неправильных дробей в десятичные
- Записываем число, которое находится в числителе.
- Десятичной запятой отделяем столько цифр справа, сколько нулей есть в знаменателе исходной обыкновенной дроби.
Ниже приведем пример на использование этого правила.
Пример 3. Перевод обыкновенных дробей в десятичные
Переведем дробь 56888038009 100000 из обыкновенной неправильной в десятичную.
Сначала запишем число из числителя:
Теперь справа отделим десятичной запятой пять цифр (количество нулей в знаменателе — пять). Получим:
Следующий вопрос, который закономерно возникает: как перевести в десятичную дробь смешанное число, если знаменателем его дробной части является число 10, 100, 1000 и т.д. Для обращения в десятичную дробь такого числа можно воспользоваться следующим правилом.
Правило перевода смешанных чисел в десятичные дроби
- Выполняем подготовку дробной части числа, если это необходимо.
- Записываем целую часть исходного числа и ставим после него запятую.
- Записываем число из числителя дробной части вместе с дописанными нулями.
Обратимся к примеру.
Пример 4. Перевод смешанных чисел в десятичные дроби
Переведем смешанное число 23 17 10000 в десятичную дробь.
В дробной части имеем выражение 17 10000 . Выполним его подготовку и допишем слева от числителя еще два нуля. Получим: 0017 10000 .
Теперь записываем целую часть числа и ставим после него запятую: 23 , . .
После запятой записываем число из числителя вместе с нулями. Получаем результат:
23 17 10000 = 23 , 0017
Перевод обыкновенных дробей в конечные и бесконечные периодические дроби
Конечно, можно переводить в десятичные дроби и обыкновенные дроби со знаменателем, не равным 10, 100, 1000 и т.д.
Часто дробь можно легко привести к новому знаменателю, а затем уже воспользоваться правилом, изложенным в первом пункте данной статьи. Например, достаточно умножить числитель и знаменатель дроби 25 на 2, и мы получим дробь 410, которая легко приводится к десятичному виду 0,4.
Однако такой способ перевода обыкновенной дроби в десятичную удается использовать не всегда. Ниже рассмотрим, как поступать, если применить рассмотренный способ невозможно.
Принципиально новый способ обращения обыкновенной дроби в десятичную сводится к делению числителя на знаменатель столбиком. Эта операция очень похожа на деление натуральных чисел столбиком, но имеет свои особенности.
Числитель при делении представляется в виде десятичной дроби — справа от последней цифры числителя ставится запятая и дописываются нули. В получившемся частном десятичная запятая ставится тогда, когда заканчивается деление целой части числителя. Как именно работает этот способ, станет понятно после рассмотрения примеров.
Пример 5. Перевод обыкновенных дробей в десятичные
Переведем обыкновенную дробь 621 4 в десятичный вид.
Представим число 621 из числителя в виде десятичной дроби, добавив после запятой несколько нулей. 621 = 621 , 00
Теперь разделим столбиком 621 , 00 на 4 . Первые три шага деления будут такими же, как при делении натуральных чисел, и мы получим.
Когда мы добрались до десятичной запятой в делимом, а остаток отличен от нуля, ставим в частном десятичную запятую, и продолжаем делить, не обращая более внимания на запятую в делимом.
В итоге мы получаем десятичную дробь 155 , 25 , которая и является результатом обращения обыкновенной дроби 621 4
Рассмотрим решение еще одного примера, чтобы закрепить материал.
Пример 6. Перевод обыкновенных дробей в десятичные
Обратим обыкновенную дробь 21 800 .
Для этого в столбик разделим дробь 21 , 000 на 800 . Деление целой части закончится на первом же шаге, поэтому сразу после него ставим в частном десятичную запятую и продолжаем деление, не обращая внимания на запятую в делимом до того момента, пока не получим остаток, равный нулю.
В результате мы получили: 21 800 = 0 , 02625 .
Но как быть, если при делении мы так и не получим в остатке 0. В таких случаях деление можно продолжать бесконечно долго. Однако, начиная с определенного шага, остатки будут периодически повторяться. Соответственно, будут повторяться и цифры в частном. Это значит, что обыкновенная дробь переводится в десятичную бесконечную периодическую дробь. Проиллюстрируем сказанное на примере.
Пример 7. Перевод обыкновенных дробей в десятичные
Обратим обыкновенную дробь 19 44 в десятичную. Для этого выполним деление столбиком.
Мы видим, что при делении повторяются остатки 8 и 36 . При этом в частном повторяются цифры 1 и 8 . Это и есть период в десятичной дроби. При записи эти цифры берутся в скобки.
Таким образом, исходная обыкновенная дробь переведена в бесконечную периодическую десятичную дробь.
19 44 = 0 , 43 ( 18 ) .
Пусть перед нами несократимая обыкновенная дробь. К какому виду она приведется? Какие обыкновенные дроби переводятся в конечные десятичные, а какие — в бесконечные периодические?
Во первых, скажем, что если дробь удается привести к одному из знаменателей 10, 100, 1000. то она будет иметь вид конечной десятичной дроби. Чтобы дробь приводилась к одному из таких знаменателей, ее знаменатель должен быть делителем хотя бы одного из чисел 10, 100, 1000 и т.д. Из правил разложения чисел на простые множители следует, что делитель чисел 10, 100, 1000 и т.д. должен, при разложении на простые множители, содержать лишь числа 2 и 5.
- Обыкновенную дробь можно привести к виду конечной десятичной дроби, если ее знаменатель можно разложить на простые множители 2 и 5.
- Если кроме чисел 2 и 5 в разложении знаменателя присутствуют другие простые числа, дробь приводится к виду бесконечной периодической десятичной дроби.
Пример 8. Перевод обыкновенных дробей в десятичные
Какая из данных дробей 47 20 , 7 12 , 21 56 , 31 17 переводится в конечную десятичную дробь, а какая — только в периодическую. Дадим ответ на этот вопрос, не выполняя непосредственно перевода обыкновенной дроби в десятичную.
Дробь 47 20 , как легко заметить, умножением числителя и знаменателя на 5 приводится к новому знаменателю 100 .
47 20 = 235 100 . Отсюда делаем вывод, что данная дробь переводится в конечную десятичную дробь.
Разложение знаменателя дроби 7 12 на множители дает 12 = 2 · 2 · 3 . Так как простой множитель 3 отличен от 2 и от 5 , данная дробь не может быть представлена в виде конечной десятичной дроби, а будет иметь вид бесконечной периодической дроби.
Дробь 21 56 , во-первых, нужно сократить. После сокращения на 7 получим несократимую дробь 3 8 , разложение знаменателя которой на множители дает 8 = 2 · 2 · 2 . Следовательно, это конечная десятичная дробь.
В случае с дробью 31 17 разложение знаменателя на множители представляет собой само простое число 17 . Соответственно, эту дробь можно обратить в бесконечную периодическую десятичную дробь.
Обыкновенную дробь нельзя перевести в бесконечную и непериодическую десятичную дробь
Выше мы говорили только о конечных и бесконечных периодических дробях. Но может ли какая-либо обыкновенная дробь быть обращена в вид бесконечной непериодической дроби?
При переводе бесконечной дроби в десятичную получается либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.
Остаток от деления всегда меньше делителя. Другими словами, согласно теореме о делимости, если мы делим какое-то натуральное число на число q, то остаток деления в любом случае не может быть больше, чем q-1. После окончания деления возможна одна из следующих ситуаций:
- Мы получаем в остатке 0, и на этом деление заканчивается.
- Мы получаем остаток, который при последующем делении повторяется, в результате мы имеем бесконечную периодическую дробь.
Иных вариантов при обращении обыкновенной дроби в десятичную не может быть. Скажем также, что длина периода (количество цифр) в бесконечной периодической дроби всегда меньше, чем число цифр в знаменателе соответствующей обыкновенной дроби.
Перевод десятичных дробей в обыкновенные дроби
Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?
Правило перевода десятичных дробей в обыкновенные дроби
- В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть.
- В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой.
- При необходимости сокращаем полученную обыкновенную дробь.
Рассмотрим применение данного правила на примерах.
Пример 8. Перевод десятичных дробей в обыкновенные
Представим число 3 , 025 в виде обыкновенной дроби.
- В числитель записываем саму десятичную дробь, отбросив запятую: 3025 .
- В знаменателе пишем единицу, а после нее три нуля — именно столько цифр содержится в исходной дроби после запятой: 3025 1000 .
- Полученную дробь 3025 1000 можно сократить на 25 , в результате чего мы получим: 3025 1000 = 121 40 .
Переведем дробь 0 , 0017 из десятичных в обыкновенные.
- В числителе запишем дробь 0 , 0017 , отбросив запятую и нули слева. Получится 17 .
- В знаменатель записываем единицу, а после нее пишем четыре нуля: 17 10000 . Данная дробь несократима.
Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?
Сформулируем еще одно правило.
Правило перевода десятичных дробей в смешанные числа.
- Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа.
- В числителе записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть.
- В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.
Обратимся к примеру
Пример 10. Перевод десятичной дроби в смешанное число
Представим дробь 155 , 06005 в виде смешанного числа.
- Записываем число 155 , как целую часть.
- В числителе записываем цифры после запятой, отбросив нуль.
- В знаменателе записываем единицу и пять нулей
Поучаем смешанное число: 155 6005 100000
Дробную часть можно сократить на 5 . Сокращаем, и получаем финальный результат:
155 , 06005 = 155 1201 20000
Перевод бесконечных периодических десятичных дробей в обыкновенные дроби
Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.
Самый простой случай — период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.
Пример 11. Перевод периодической десятичной дроби в обыкновенную
Обратим периодическую дробь 3 , 75 ( 0 ) .
Отбросив нули справа, получим конечную десятичную дробь 3 , 75 .
Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем:
3 , 75 ( 0 ) = 3 , 75 = 375 100 = 15 4 .
Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:
0 , ( 74 ) = 0 , 74 + 0 , 0074 + 0 , 000074 + 0 , 00000074 + . .
Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен b , а знаменатель q таков, что 0 < q < 1 , то сумма равна b 1 — q .
Рассмотрим несколько примеров с применением данной формулы.
Пример 12. Перевод периодической десятичной дроби в обыкновенную
Пусть у нас есть периодическая дробь 0 , ( 8 ) и нам нужно перевести ее в обыкновенную.
0 , ( 8 ) = 0 , 8 + 0 , 08 + 0 , 008 + . .
Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом 0 , 8 и знаменателем 0 , 1 .
0 , ( 8 ) = 0 , 8 + 0 , 08 + 0 , 008 + . . = 0 , 8 1 — 0 , 1 = 0 , 8 0 , 9 = 8 9
Это и есть искомая обыкновенная дробь.
Для закрепления материала рассмотрим еще один пример.
Пример 13. Перевод периодической десятичной дроби в обыкновенную
Обратим дробь 0 , 43 ( 18 ) .
Сначала записываем дробь в виде бесконечной суммы:
0 , 43 ( 18 ) = 0 , 43 + ( 0 , 0018 + 0 , 000018 + 0 , 00000018 . . )
Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде:
0 , 0018 + 0 , 000018 + 0 , 00000018 . . = 0 , 0018 1 — 0 , 01 = 0 , 0018 0 , 99 = 18 9900 .
Полученное прибавляем к конечной дроби 0 , 43 = 43 100 и получаем результат:
0 , 43 ( 18 ) = 43 100 + 18 9900
После сложения данных дробей и сокращения получим окончательный ответ:
0 , 43 ( 18 ) = 19 44
В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.
Математика
Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе — это целая часть дроби. Цифра после запятой — числитель будущей дроби. Если после запятой однозначное число — в знаменателе будет 10, если двухзначное — 100, трехзначное — 1000 и т.д. Некоторые полученные дроби можно сократить. В наших примерах
Преобразование дроби в десятичное число
Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или
Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 . В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.
Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,
Некоторые дроби невозможно преобразовать в десятичные числа!
Например,
Преобразование смешанной дроби в неправильную
Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть
При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей
Преобразование неправильной дроби в смешанную (выделение целой части)
Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз «3» вмещается в «23». Или 23 делим на 3 на калькуляторе, целое число до запятой — искомое. Это «7». Далее определяем числитель уже будущей дроби: полученную «7» умножаем на знаменатель «3» и из числителя «23» вычитаем полученное. Как бы находим то лишнее, что остается от числителя «23», если изъять максимальное количество «3». Знаменатель оставляем без изменения. Все сделано, записываем результат
Преобразование периодической дроби в обыкновенную
Из числа, стоящего до второго периода, вычесть число, стоящее до первого периода, и сделать эту разность числителем; в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, сколько цифр между запятой и первым периодом.
Периодические десятичные дроби
Десятичные дроби после запятой могут содержать бесконечное количество цифр.
Бесконечные десятичные дроби — это десятичные дроби, в записи которых находится бесконечное число цифр.
Бесконечную десятичную дробь практически невозможно записать полностью, поэтому при их записи ограничиваются только некоторым конечным количеством цифр после запятой, после чего ставят многоточие, которое указывает на бесконечно продолжающуюся последовательность цифр.
Например, $0,443340831\dots ; 3,1415935432\dots ; 135,126730405\dots ; 4,33333333333\dots ; 676,68349349\dots$.
Рассмотрим последние две бесконечные десятичные дроби. В дроби $4,33333333333\dots$ бесконечно повторяется цифра $3$, а в дроби $676,68349349\dots$ с третьего знака после запятой повторяется группа цифр $3$, $4$ и $9$. Подобные бесконечные десятичные дроби называются периодическими.
Периодические десятичные дроби
Периодические десятичные дроби (или периодические дроби) — это бесконечные десятичные дроби, в записи которых с некоторого знака после запятой бесконечно повторяется какая-нибудь цифра или их группа, которая называется периодом дроби>.
Например, период периодической дроби $4,33333333333\dots$ — цифра $3$, а период дроби $676,68349349\dots$ — группа цифр $349$.
Для краткости записи бесконечных периодических десятичных дробей принято период записывать один раз, заключив его в круглые скобки. Например, периодическую дробь $4,33333333333\dots$ записывают $4,(3)$, а периодическую дробь $676,68349349\dots$ записывают $676,68(349)$.
Бесконечные десятичные периодические дроби получают при переводе обыкновенных дробей, знаменатели которых содержат простые множители, кроме $2$ и $5$, в десятичные дроби.
Любая конечная десятичная дробь (и целое число) может быть записана в виде периодической дроби, для чего достаточно справа дописать бесконечное количество цифр $0$.
Например, конечная десятичная дробь $45,12$ может быть записана в виде периодической дроби как $45,12(0)$, а целое число $(74)$ в виде бесконечной периодической десятичной дроби будет иметь вид $74(0)$.
В случае периодических дробей, которые имеют период 9, используют переход к другой записи периодической дроби с периодом $0$. Только для этого период 9заменяют периодом $0$, при этом значение следующего по старшинству разряда увеличивается на $1$.
Например, периодическую дробь $7,45(9)$ можно заменить периодической дробью $7,46(0)$ или равной ей десятичной дробью $7,46$.
Бесконечные десятичные периодические дроби представляются рациональными числами. Другими словами, любая периодическая дробь может быть переведена в обыкновенную дробь, а любая обыкновенная дробь может быть представлена в виде периодической дроби.
Перевод обыкновенных дробей в конечные и бесконечные периодические десятичные дроби
В десятичную дробь можно перевести не только обыкновенные дроби со знаменателями $10, 100, \dots$.
В некоторых случаях исходную обыкновенную дробь можно легко привести к знаменателю $10$, $100$ или $1 \ 000$, после чего можно полученную дробь представить в виде десятичной дроби.
Чтобы дробь $\frac<3><5>$ >привести к дроби со знаменателем $10$, нужно числитель и знаменатель дроби умножить на $2$, после чего получим $\frac<6><10>$, которую не составит труда перевести в десятичную дробь $0,6$.
Для остальных случаев используется другой способ перевода обыкновенной дроби в десятичную>:
числитель нужно заменить десятичной дробью с любым числом нулей после десятичной запятой;
разделить числитель дроби на знаменатель (деление выполняется как деление натуральных чисел в столбик, а в частном ставят десятичную запятую после окончания деления целой части делимого).
Перевести обыкновенную дробь $\frac<621><4>$ в десятичную дробь.
Решение.
Число $621$ в числителе представим в виде десятичной дроби. Для этого добавим десятичную запятую и для начала два нуля после нее. Далее при необходимости можно буде добавить нули еще. Итак, получили $621,00$.
Выполним деление числа $621,00$ на $4$ в столбик:
Деление дошло до десятичной запятой в делимом, а остаток при этом получили не нулевой. В таком случае в частном ставится десятичная запятая и продолжается деление столбиком, не взирая на запятые:
В остатке получили нуль, значит деление окончено.
Ответ: $155,25$.
Возможен случай, когда при делении числителя и знаменателя обыкновенной дроби в остатке $0$ так и не получается. В этом случае деление можно продолжать бесконечно. Начиная с определенного момента остатки от деления периодически повторяются, а значит повторяются и цифры в частном. Из этого можно сделать вывод, что данная обыкновенная дробь переведется в бесконечную периодическую десятичную дробь.
Перевести обыкновенную дробь $\frac<19><44>$ в десятичную дробь.
Для перевода обыкновенной дроби в десятичную выполним деление в столбик:
При делении повторяются остатки $8$ и $36$, а в частном также повторяются цифры $1$ и $8$. Итак, исходную обыкновенную дробь $\frac<19><44>$ перевели в периодическую дробь $\frac<19><44>=0,43181818\dots =0,43(18)$.
Ответ: $0,43(18)$.
Общий вывод о переводе обыкновенных дробей в десятичные:
если знаменатель можно разложить на простые множители, среди которых будут присутствовать только числа $2$ и $5$, то такую дробь можно перевести в конечную десятичную дробь;
если кроме чисел $2$ и $5$ в разложении знаменателя присутствуют другие простые числа, то такая дробь переводится в бесконечную десятичную периодическую дробь.