Как быстро возводить в квадрат числа оканчивающиеся на 5
Перейти к содержимому

Как быстро возводить в квадрат числа оканчивающиеся на 5

  • автор:

Вычислительные приёмы

На олимпиаде Кенгуру и на Внешнем независимом тестировании запрещено пользоваться калькуляторами. Поэтому очень важно научиться тратить на вычисления как можно меньше времени, чтобы использовать его на обдумывание задач.

Умножение двузначного числа на 11

Чтобы двузначное число умножить на 11, сложите его первую и последнюю цифру. Если результат будет однозначным, впишите его между двумя цифрами первоначального числа, а если двузначным – прибавьте первую цифру результата к первой цифре первоначального числа, а вторую – впишите между цифрами.

Примеры:
45х11
Складываем 4+5=9. Поэтому результатом будет 495.

76х11
Складываем 7+6=13. Единицу прибавляем к семёрке, а тройку пишем в середину и получаем 836.

Математическое обоснование:
Пусть нужно двузначное число 10a+b. Умножить на 11. Результатом будет 110a+11b = 100a +10 (a+b) +b

Умножение и деление на 5 и 25

Чтобы число умножить число на 5, его нужно разделить на 2 и умножить на 10. Чтобы число разделить на 5, его нужно умножить на 2 и разделить на 10.

Аналогично, умножение/деление на 25 заменяется делением/умножением на 4 и умножением/делением на 100

Примеры:
36х5
Делим 36 на 2, получаем 18. Умножаем 18 на 10 и получаем 180.

3/5
Умножаем 3 на 2 и получаем 6. Делим 6 на 10 и получаем 0,6

45/25
Умножаем 45 на 4, получаем 180. Делим 180 на 100, получаем 1,8

84х25
Делим 84 на 4, получаем 21. Умножаем 21 на 100 и получаем 2100.

Математическое обоснование:
Поскольку 5=10/2, умножение/деление на 2 можно свести к более простым умножениям/делениям на 2 и 10.

Возведение в квадрат числа, оканчивающегося на 5

Чтобы возвести в квадрат число, оканчивающееся пятёркой, нужно умножить число, полученное отбрасыванием последней пятёрки на следующее в натуральном ряду, и к результату приписать 25.

Примеры:
65 2
Умножаем 6 на 7, получаем 42. Приписываем 25, получаем 4225.

115 2
Умножаем 11 на 12, получаем 132. Приписываем 25, получаем 13225.

Математическое обоснование:
Возведём в квадрат число 10n+5. (10n+5) 2 = 100n 2 +100n+25 = 100n(n+1)+25, откуда и следует данное правило.

Возведение в квадрат числа, близкого к круглому

Целесообразно воспользоваться формулами квадрата суммы или разности.

Примеры:
19 2 = (20-1) 2 = 400–40+1=361

42 2 = (40+2) 2 = 1600+160+4 = 1764

Математическое обоснование:
Формула квадрата суммы: (a+b) 2 = a 2 +2ab+b 2
Формула квадрата разности: (a-b) 2 = a 2 –2ab+b 2

Вычитание из степени десятки

Для вычитания числа из степени десятки, нужно последнюю его цифру заменить дополнением до десяти, а остальные (включая первые виртуальные нули) – дополнениями до девяти.

Примеры:
1000-725 = (9-7)(9-2)(10-5) = 275
100000 – 1237 = 100000 – 01237 = (9-0)(9-1)(9-2)(9-3)(10-7) = 98763

Математическое обоснование:
Правило следует из алгоритма вычитания столбиком.

Прибавление числа, близкого к степени десятки

Вместо прибавления числа, состоящего из девяток и оканчивающегося на 9 (8, 7, 6 и т.д.), прибавьте следующую большую степень десятки и вычтите 1 (2, 3, 4 и.т.д)

Примеры:
125+999 = 1125-1 = 1124
6528+996 =7258-4=7254

Математическое обоснование:
Для k-значного числа 99…9 = 100..00 – 1

Упрощённые признаки делимости на 4 и 8

Обычно для проверки делимости на 4 применяется следующий признак: Если двуциферное окончание числа делится на 4, то и само число делится на 4.

Однако, использовав обобщённый признак делимости, заметим, что число 10 даёт остаток 2 при делении на 4. Поэтому переформулируем правило так: Если сумма последней цифры с удвоенной предпоследней делится на 4, то и само число делится на 4.

Аналогично для делимости на 8. Вместо проверки на делимость трёхциферного окончания, можно выполнять проверку суммы последней, удвоенной предпоследней и учетверённой третьей с конца цифры.

Примеры:
Число 1324
4+2*2=8 – делится на 4.
4+2*2+3*4=20 – не делится на 8

Число 6328
8+2*2=12 – делится на 4.
8+2*2+3*4=24 – делится на 8

Быстрое возведение чисел от 1 до 100 в квадрат

Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.


*квадраты до сотни

Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.

Правило 1 (отсекает 10 чисел)

Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.

В таблице отмечены красным.

Правило 2 (отсекает 10 чисел)

Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.

В таблице отмечены зеленым.

Правило 3 (отсекает 8 чисел)

Для чисел от 40 до 50.

Достаточно трудно, верно? Давайте разберем пример:

В таблице отмечены светло-оранжевым.

Правило 4 (отсекает 8 чисел)

Для чисел от 50 до 60.

Тоже достаточно трудно для восприятия. Давайте разберем пример:

В таблице отмечены темно-оранжевым.

Правило 5 (отсекает 8 чисел)

Для чисел от 90 до 100.

Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:

В таблице отмечены темно-темно-оранжевым.

Правило №6 (отсекает 32 числа)

Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂
В таблице отмечены синим.

Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:

Формулы (осталось 24 числа)

Для чисел от 25 до 50

Для чисел от 50 до 100

Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):

UPDATE
Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:

Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».

Для квадратов, соответственно, еще проще.

Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.

Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.

Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.

Если тема быстрого счета интересна — буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.

10 трюков, упрощающих математические операции

Фото автора Александр Мураховский

Недавно, прочитав книгу «Магия чисел», я почерпнул огромное количество информации. В книге рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик — это прошлый век, и непонятно, почему этому до сих пор учат в школах.

Я выбрал 10 самых интересных и полезных трюков и хочу поделиться ими с вами.

Умножение «3 на 1» в уме

Умножение трёхзначных чисел на однозначные — это очень простая операция. Всё, что нужно сделать, — это разбить большую задачу на несколько маленьких.

Пример: 320 × 7

  1. Разбиваем число 320 на два более простых числа: 300 и 20.
  2. Умножаем 300 на 7 и 20 на 7 по отдельности (2 100 и 140).
  3. Складываем получившиеся числа (2 240).

Возведение в квадрат двузначных чисел

Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.

Пример: 41^2

  1. Вычтем 1 из 41, чтобы получить 40, и добавим 1 к 41, чтобы получить 42.
  2. Умножаем два получившихся числа, воспользовавшись предыдущим советом (40 × 42 = 1 680).
  3. Прибавляем квадрат числа, на величину которого мы уменьшали и увеличивали 41 (1 680 + 1^2 = 1 681).

Ключевое правило здесь — превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 — 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.

Мгновенное возведение в квадрат числа, оканчивающегося на 5

С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, — это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.

Пример: 75^2

  1. Умножаем 7 на 8 и получаем 56.
  2. Добавляем к числу 25 и получаем 5 625.

Деление на однозначное число

Деление в уме — это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.

Пример: 675 : 8

  1. Найдём приближенные ответы, умножив 8 на удобные числа, которые дают крайние результаты (8 × 80 = 640, 8 × 90 = 720). Наш ответ — 80 с хвостиком.
  2. Вычтем 640 из 675. Получив число 35, нужно разделить его на 8 и получить 4 с остатком 3.
  3. Наш финальный ответ — 84,3.

Мы получаем не максимально точный ответ (правильный ответ — 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.

Простое получение 15%

Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.

Пример: 15% от 650

  1. Находим 10% — 65.
  2. Находим половину от 65 — это 32,5.
  3. Прибавляем 32,5 к 65 и получаем 97,5.

Банальный трюк

Пожалуй, все мы натыкались на такой трюк:

Задумайте любое число. Умножьте его на 2. Прибавьте 12. Разделите сумму на 2. Вычтите из неё исходное число.

Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:

  1. 2x (удвоить число).
  2. 2x + 12 (прибавить 12).
  3. (2x + 12) : 2 = x + 6 (разделить на 2).
  4. x + 6 − x (вычесть исходное число).

Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку. 🙂

Магия числа 1 089

Этот трюк существует не одно столетие.

Запишите любое трёхзначное число, цифры которого идут в порядке уменьшения (к примеру, 765 или 974). Теперь запишите его в обратном порядке и вычтите его из исходного числа. К полученному ответу добавьте его же, только в обратном порядке.

Какое бы число вы ни выбрали, в результате получите 1 089.

Быстрые кубические корни

Для того чтобы быстро считать кубический корень из любого числа, понадобится запомнить кубы чисел от 1 до 10:

1 2 3 4 5 6 7 8 9 10
1 8 27 64 125 216 343 512 729 1 000

»
Как только вы запомните эти значения, находить кубический корень из любого числа будет элементарно просто.

Пример: кубический корень из 19 683

  1. Берём величину тысяч (19) и смотрим, между какими числами она находится (8 и 27). Соответственно, первой цифрой в ответе будет 2, а ответ лежит в диапазоне 20+.
  2. Каждая цифра от 0 до 9 появляется в таблице по одному разу в виде последней цифры куба.
  3. Так как последняя цифра в задаче — 3 (19 683), это соответствует 343 = 7^3. Следовательно, последняя цифра ответа — 7.
  4. Ответ — 27.

Примечание: трюк работает только тогда, когда исходное число является кубом целого числа.

Правило 70

Чтобы найти число лет, необходимых для удвоения ваших денег, нужно разделить число 70 на годовую процентную ставку.

Пример: число лет, необходимое для удвоения денег с годовой процентной ставкой 20%.

70 : 20 = 3,5 года

Правило 110

Чтобы найти число лет, необходимых для утроения денег, нужно разделить число 110 на годовую процентную ставку.

Пример: число лет, необходимое для утроения денег с годовой процентной ставкой 12%.

Математика — волшебная наука. Я даже немного смущён тем, что такие простые трюки смогли меня удивить, и даже не представляю, сколько ещё математических фокусов можно узнать.

Долой калькулятор: 12 простых трюков, которые помогут вам быстро считать

Как бы мы ни хотели это признавать, учителя были правы: математика нужна каждому из нас. Но далеко не всем дается ловкое жонглирование числами. Тогда на помощь приходят легко запоминающиеся математические приемы – настоящее спасение, когда под рукой, как назло, нет калькулятора.

Ниже вы найдете 12 способов быстрых вычислений для всех, кто далек от точных наук.

1. Быстрое вычисление 20%

Представим, что границы вновь открыли и первым делом вы отправились в США. А там принято оставлять на чай. Обычно размер чаевых составляет 15-20% от суммы вашего заказа.

По словам Кейт Сноу, автора серии книг The Math Facts That Stick, чтобы быстро вычислить 20% от суммы, вам нужно просто разделить число в чеке на 5.

Например, вы поели на 85 долларов. Разделите 85 на 5, и у вас получится 17 долларов – чаевые, которые вы должны оставить официанту.

2. Умножение двузначных чисел на 11

Умножить число на 11 очень легко с помощью хитрого трюка от math.hmc.edu. Просто сложите две цифры и поместите полученную сумму в середину числа.

Например, вы умножаете 25 на 11. Если сложить 2 и 5, получится 7. Теперь расположите 7 между 2 и 5, чтобы найти окончательный ответ – 275.

3. Быстрое удвоение

Чтобы удвоить большое число, умножьте каждую цифру на 2 и сложите их между собой. Кейт Сноу предлагает начинать слева – так будет легче.

«Чтобы удвоить, к примеру, 147, начните с разряда сотен. Если умножить 100 на 2, получится 200. 40 на 2 – 80. 7 на 2 – 14. Теперь сложите числа между собой (200 + 80 + 14), и вы получите 294», – объясняет Сноу.

4. Умножение чисел, которые оканчиваются на ноль

Примеры с большими пугающими числами, которые оканчиваются на ноль, тоже легко решить с помощью специального приема. Согласно education.cu-portland.edu, нужно просто «вычеркнуть» нули из примера, а в конце вновь их добавить.

Если вы умножаете 600 на 400, уберите все нули и перемножьте 6 на 4. Получится 24. Затем подсчитайте общее количество нулей в исходном уравнении и припишите их к полученному значению. Так как в нашем примере было четыре нуля, то ответ будет равен 240000.

5. Умножение на 9

Если вам так и не удалось выучить таблицу умножения – не переживайте. По словам Сноу, чтобы легко умножить число на 9, нужно умножить его на 10 и вычесть исходное число из полученного значения.

Например, вам нужно умножить 9 на 23. Для этого умножаем 23 на 10 и получаем 230. А затем вычитаем из него 23, чтобы получить окончательный ответ – 207.

6. Деление на 10, 100 или 1000

Разделить число на 10 проще простого – согласно Сноу, «нужно просто переместить десятичный знак на одну позицию влево от исходного числа, чтобы найти ответ».

Для деления на 100 применим тот же метод, за исключением одного – нужно переместить десятичный разряд на две позиции левее исходного числа. Что касается деления на 1000, просто переместите десятичный знак на три позиции влево.

Например, если вы делите 42,94 на 10, вы просто перемещаете десятичный знак на одну позицию влево и получаете 4,294.

7. Умножение на 10, 100 или 1000

Здесь все работает с точностью до наоборот. Чтобы умножить число на 10, переместите десятичный знак на одну позицию вправо. На 100 – на две позиции. На 1000 – на три позиции.

Например, если вам нужно умножить 366,78 на 100, передвиньте десятичный знак на две цифры вправо, чтобы получить ответ 36678.

8. Преобразование периодической десятичной дроби в обыкновенную

Согласно businessinsider.com, нужно выполнить всего 3 шага, чтобы легко превратить бесконечную десятичную дробь в обыкновенную, с числителем и знаменателем.

  • Шаг 1. Найдите повторяющиеся цифру или число. Например, у 0,636363 это будет 63.
  • Шаг 2. Определите, сколько разрядов в этом числе. В нашем случае у 63 – два разряда.
  • Шаг 3. Разделите повторяющееся число на число с таким же количеством разрядов, которое будет состоять из одних девяток – в данном случае 99. Получим 63/99. Теперь сократим ее и получим 7/11 – наш ответ.

9. Умножение на 25

Умножать на 25 не так уж и сложно, если представлять число в виде дроби 100/4. В этом случае все, что вам нужно сделать, это разделить число на 4 и умножить на 100.

Например, вам нужно умножить 84 на 25. Сначала делим 84 на 4 – получаем 21, а потом умножаем значение выражения на 100. Ответ: 2100.

10. Возведение чисел, оканчивающихся на 5, в квадрат

«Этот математический трюк подразумевает 2 шага», – объясняет Сноу. Чтобы возвести в квадрат число, которое оканчивается на пять, возьмите первую цифру числа и умножьте ее на себя. После этого прибавьте к полученному результату первую цифру и припишите к ответу 25. Кружится голова? Разберем на примере.

Если вы умножаете 35 на 35, сначала умножьте 3 на 3 – получится 9, – и прибавьте 3 к ответу – получится 12. Теперь припишите 25 в конец найденного числа, и вы найдете окончательный ответ: 1225.

11. Вычитание путем сложения

Если вам кажется, что сложение немного проще, чем вычитание, этот трюк для вас. Когда вам нужно найти разность двух чисел, достаточно близких друг к другу, попробуйте решить пример с помощью сложения.

«Вместо того чтобы пытаться вычесть 327 из 334, представьте это в виде суммы: мол, сколько нужно добавить к 327, чтобы получить 334?» – объясняет Сноу.

12. Сложение чисел, оканчивающихся на 99

Если вы пытаетесь прикинуть, во сколько обойдутся продукты, стоимость которых заканчивается на 99, – калькулятор не нужен. Все, что необходимо сделать, – прибавить 100 вместо 99, а потом вычесть единицу.

Сноу объясняет этот процесс на примере 176 + 199 = 375. «Если к 176 мы прибавим 200, то получим 376, – говорит эксперт. – Поскольку вы добавили на единицу больше, чем вам нужно, вычтите ее из 376, чтобы найти правильный ответ: 375».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *