Детекторный радиоприемник
А — Ампер, единица измерения силы тока.
В — Вольт, единица измерения напряжения.
Вт – Ватт, единица измерения мощности.
Гн – Генри, единица измерения индуктивности.
ДРП – детекторный радиоприемник.
Др.- другие.
КПД – коэффициент полезного действия.
КПЕ – конденсатор переменной емкости.
УГО – условное графическое обозначение.
Ф — Фарада
ЭАП — электроакустический преобразователь.
Е — напряженность электрического поля радиостанции в месте приема.
m — коэффициент модуляции.
Q — добротность колебательного контура.
W – мощность.
Введение
В настоящее время известно множество типов радиоприемников: детекторный, прямого усиления, регенеративный, сверхрегенеративный, супергетеродинный и прямого преобразования. Из перечисленных, детекторный радиоприемник (далее по тексту — ДРП), имеет наихудшую чувствительность и селективность, но, несмотря на невысокие параметры, он представляет интерес для начинающих радиолюбителей и специалистов.
Простота конструкции, недефицитность деталей и отсутствие источников питания (именно поэтому ДРП изучается в средних учебных заведениях в наше время) способствовали его популярности в 20-40гг 20в. Дадим определение ДРП: это приемник, работающий за счет энергии радиоволн и не имеющий усилителя. Следует заметить, что приемник прямого усиления – это тот же детекторный с каскадами усиления сигнала низкой частоты.
1. Классическая схема ДРП
Рис.1. Типовая схема ДРП
Существует два основных варианта классических схем ДРП. Первый вариант изображен на рис.1. Второй вариант отличается от первого только тем, что детекторный диод подключен не к части контура, а к контуру полностью.
1.1. Функциональная схема ДРП
Рис. 2. Функциональная схема классического ДРП.
Радиотракт включает в себя входные цепи приемника: антенна, заземление, колебательный контур. Детектор — каскад детектирования на точечном диоде и сглаживающий конденсатор С2. Электроакустический преобразователь (ЭАП) служит для преобразования электрического сигнала в звуковой. В качестве ЭАП используются: наушники, электродинамические громкоговорители («динамики»).
1.2. Принцип работы ДРП
Настроив контур на частоту принимаемой радиостанции, выделяем высокочастотный АМ — сигнал. Частота его колебаний велика (более 100 кГц), и в наушниках он слышен не будет. Сигнал нужно продетектировать (преобразовать ВЧ электрические колебания, в колебания НЧ). Для этого служит диод VD 1 (рис.1). Он обладает свойством проводить ток только в одном направлении, от анода, обозначенного треугольником, к катоду. Положительные полуволны колебаний в контуре вызовут ток через диод, а отрицательные закроют его, и тока не будет. При отсутствии конденсатора C 2 через наушники будет протекать пульсирующий ток. Он содержит постоянную составляющую, которая изменяется со звуковой частотой. Такой ток уже вызовет в наушниках звук. Процесс детектирования улучшается при подсоединении блокировочного конденсатора C 2. он заряжается положительными полуволнами почти до амплитудного значения колебаний, а в промежутках между ними сравнительно медленно разряжается током через наушники.
2. Компоненты ДРП
2.1. Колебательный контур
Классическая схема ДРП изображена на рис. 1. Она повторяется во многих популярных книжках и журналах. Антенна WA 1 и заземление присоединены к колебательному контуру (катушка L 1 и КПЕ C 1). Колебательный контур служит для выделения из всей массы принимаемых сигналов лишь одного, желаемого. Если частота сигнала совпадает с частотой настройки контура, напряжение на нем максимально. Для настройки в пределах диапазона изменяют емкость (используют КПЕ), для переключения диапазонов изменяют индуктивность катушки L 1.
2.2. Диод
По применению полупроводниковые диоды разделяются на группы: выпрямительные, высокочастотные, туннельные и некоторые другие (рис.2).
В качестве полупроводникового материала в диодах используется германий, кремний и арсенид галлия (в туннельных диодах).
Первые диоды стали известны с начала 20в (1906-1908 гг). Тогда же и появились первые ДРП. В 20-40гг 20в радиолюбители изготавливали детекторные диоды из кристаллов цинкита или пирита. В России пионерные работы по диодам проводил О.Лосев, который помимо детекторных диодов изготовил и первые светодиоды (он наблюдал свечение кристалла карборунда при подключении к нему батареи питания). В классических ДРП используются германиевые диоды Д2, 18,20, как самые дешевые и широко распространенные.
2.3. Конденсаторы
В классической схеме ДРП два конденсатора. С1 – переменный керамический или воздушный, предназначен для настройки приемника на частоту радиостанции (5-300 пФ). С2 нужен, чтобы убрать ВЧ – составляющую и повысить качество звука (2000 – 6800 пФ).
2.4. Головные телефоны
В России первым в приемнике высокоомные головные телефоны использовал П.Н.Рыбкин в 1899 г. За рубежом работами по усовершенствованию ДРП в эти же годы занимался Г.Маркони.
Последний элемент разбираемой схемы ДРП – головные телефоны. Для ДРП подходят только высокоомные телефоны (ТА-4, ТОН-2, ТОН-2М, ТАГ-1, ТГ-1), абсолютно не подходят низкоомные или наушники от плейера. Параметры некоторых из них приведены в Приложении 1.
Для телефонов ТОН-2 сопротивление на частоте 1000 Гц составляет 12000 Ом. Минимальная амплитуда сигнала 1000 Гц, слышимая человеком в наушниках ТОН-2 составляет 5 мВ. В классическом ДРП амплитуда сигнала на наушниках достигает 20 мВ (достаточно громко и разборчиво слышна речь и музыка), что соответствует электрической мощности 0,02 мкВт.
3. Недостатки классической схемы детекторного приемника
а) Для согласования сопротивлений колебательного контура и диода используется катушка связи (обычно 1/5-1/10 от числа витков катушки).
Следовательно, на диод поступает ВЧ напряжение в 5-10 раз меньшее, чем наводится в контуре, то есть, с большими потерями мощности (в 25-100 раз).
б) Используется энергия одного полупериода сигнала.
в) Головные телефоны сильно искажают сигнал и имеют низкий КПД (из-за металлической мембраны). Головные телефоны малоэффективны при работе на низких частотах, из-за жесткой мембраны не работают на высоких звуковых частотах. Рабочий диапазон частот наушников 300-3500 Гц. Получить качественный звук в этом случае просто невозможно.
4. Применение классического ДРП.
ДРП, выполненный по классической схеме, и в наше время находит применение для: настройки радиолюбительских передатчиков и настройки передатчиков систем электронного дистанционного управления. В любительской литературе описано успешное применение ДРП для поиска маломощных шпионских закладок (в просторечии именуемых «жучками»). В этих случаях нагрузкой ДРП работает микроамперметр постоянного тока на 10-100 мкА, шунтированный конденсатором.
5. Совершенствование ДРП
Если посмотреть на функциональную схему ДРП, можно прийти к следующим выводам: классическая схема свои возможности усовершенствования исчерпала. Кардинальное улучшение параметров ДРП возможно при полной переделке всех функциональных узлов ДРП, собранного по классической схеме.
5.1. Громкоговорящий ДРП
Добиться увеличения громкости и улучшения качества сигнала можно модернизацией всех узлов классического ДРП. В качестве колебательного контура выступает катушка индуктивности на ферритовом стержне. Эта катушка имеет межвитковую емкость, а настройка на радиостанцию производится перемещением катушки на сердечнике. Более оптимальное согласование детектора с контуром производится конденсатором связи С1 (сопротивление контура сотни килоом, а детектора 5-20 кОм). Замена одного диода диодным мостом позволяет увеличить громкость ЭАП, так как теперь в ДРП используется энергия обоих полупериодов ВЧ сигнала. Диодный мост выполнен на диодах типа Д310, так как у них меньше сопротивление и меньше потери, чем у диодов Д2, 18, 20.
Рис.4 Прибор для выбора детекторного диода
О качестве диода позволяет судить параметр — «прямой ток при напряжении 1 В», чем он больше, тем лучше.
Рис.5 Усовершенствованный классический ДРП
В качестве ЭАП используется динамик мощностью 1-8 Вт и сопротивлением катушки 4-8 Ом. Для согласования сопротивлений детектора и ЭАП служит понижающий трансформатор (
220 В/9-12 В). Для увеличения отдачи динамик устанавливается на отражательный экран. Модернизированный ДРП дает выигрыш по мощности относительно классической схемы ДРП в 140-400 раз.
5.2. Применение модернизированного ДРП.
Улучшенный ДРП является практически вечным источником бесплатной энергии «из воздуха». Он питает светильник на сверхъярком светодиоде (белом или желтом) и способен подзарядить аккумулятор, часовую батарейку или пальчиковую (типа АА или ААА) из будильника или пейджера. Он может найти применение в местах, где нет электричества, например, в коллективных садах (в доме и овощной яме), в горах. Если от него запитать светильник на сверхъярком красном светодиоде (2-10 кд), он заменит медицинский аппарат светотерапии «Дюна-Т». Также от него можно питать «серебряный ионатор» — прибор для серебрения воды.
Рис.6 ДРП – источник электрической энергии.
Накопительный конденсатор С2 рассчитан на рабочее напряжение 25-60 В при минимальном токе утечки. Приемник настраивается на самую мощную СВ или ДВ радиостанцию в этом регионе.
5.3. ДРП, питаемый «свободной энергией поля»
Для более полного использования энергии несущей, модернизированный ДРП дополняется каскадом усиления на германиевом транзисторе. И данный приемник работает громче. Теперь он стал приемником прямого усиления.
Рис.7 ДРП (приемник прямого усиления) с увеличенным КПД.
Транзистор в усилителе приемника низкочастотный и маломощный: МП39-42. Сигнал ЗЧ на базу подается через разделительный конденсатор С3. ЭАП приемника состоит из динамика ВА1, включенного через согласующий трансформатор Т1.
Настройка этого приемника сводится к настройке входного контура на частоту мощной радиостанции и одновременной подстройке емкости С1, а затем подбору сопротивления R 1 по максимальной громкости звучания.
6. Экспериментальная часть
6.1. Сборка и наладка модернизированного ДРП.
Для собранного по рис.5 модернизированного ДРП и настроенного перемещением катушки по стержню на радиостанцию «Радио России» (длина волны 260 кГц – диапазон ДВ) вольтметр на выходе приемника показал напряжение 0,25 В. После согласования сопротивлений контура и детектора согласующим конденсатором вольтметр показал 2,35 В. Затем был подключен ЭАП: динамик 6ГД-3. Полоса воспроизводимых частот 6ГД-3: 100-10000 Гц. Громко и с высоким качеством слышна музыка и речь. Антенна: медный провод диаметром 0,5 мм и длиной 8 метров. В качестве заземления использована батарея центрального отопления. Если вместо ЭАП включали сверхъяркий желтый светодиод, то наблюдали его яркое свечение!
Таким образом, все мои предположения подтвердились. Улучшенный ДРП может работать в качестве практически вечного источника энергии. Громкость звучания этого приемника можно дополнительно увеличить при использовании рупора, установленного на ЭАП.
При замене ДВ катушки на более высокодобротную на выходе приемника было получено напряжение 5,30 В и громкость приемника значительно возросла. Дальнейшее увеличение громкости приемника можно получить за счет применения более эффективной антенны.
6.2. Сборка и наладка ДРП с каскадом усиления на транзисторе (питаемый энергией электромагнитной волны).
Приемник собранный по рис.7 работал значительно громче, чем модернизированный ДРП. И это естественно, так как транзисторный усилитель НЧ питается постоянной составляющей сигнала, а она в 3-10 раз выше, чем НЧ составляющая, вдобавок транзистор усиливает слабый НЧ сигнал.
Приложение
Таблица 1 Электрические параметры высокоомных телефонов типа ТОН-2
Основные параметры
Значение параметра
Модуль полного электрического сопротивления переменному току одного телефонного капсюля на частоте 1000 Гц, не менее, Ом
Неравномерность частотной характеристики отдачи капсюля в диапазоне частот 300-3000 Гц, не более, дБ
Таблица 2 Электрические параметры детекторных диодов
Тип диода
Назначение
Среднее значение выпрямленного тока, мА
Прямой ток при напряжении 1 В, мА
Обратный ток не более, мА (при напряжении, В)
Наибольшее допустимое обратное рабочее напряжение, В
Наименьш. амплитуда обратного пробивного напряжения , В
Выпрямление переменных напряжений
* Диоды Д2 предназначены для работы в различных схемах. Оформлены в стеклянном корпусе. Предельная рабочая частота 150 МГц при температуре окружающей среды от –60 до +70 О С. Емкость между выводами при обратном напряжении на диоде – 1 пФ.
Таблица 3 Параметры громкоговорителей
Тип громкоговорителя
Отдача, Па
Треб. W сигнала для громкости 60дБ, мВт
1ГД-5, 1ГД-28, 1ГД-36
Словарь терминов
АНТЕННА (от лат. antenna — мачта, рей), в радио — устройство, предназначенное (обычно в сочетании с радиопередатчиком или радиоприемником) для излучения или (и) приема радиоволн.
ДИОД [от ди. и (электр)од ], 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления переменного тока, детектирования, преобразования частоты, переключения электрических цепей.
ЗАЗЕМЛЕНИЕ, устройство для электрического соединения с землей аппаратов, машин, приборов и др.; предназначено для защиты от опасного действия электрического тока, а в ряде случаев для использования земли в качестве проводника тока или одного из плеч несимметрического вибратора (антенны).
КОНДЕНСАТОР электрический, система из двух или более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком (бумагой, слюдой, воздухом и др.). Обладает способностью накапливать электрические заряды. Применяется в радиотехнике, электронике, электротехнике и т. д. в качестве элемента с сосредоточенной электрической емкостью.
ПИРИТ – медный минерал (в основном содержащий дисульфид меди)
СЕЛЕКТИВНОСТЬ (избирательность) радиоприемника, его способность выделять полезный радиосигнал на фоне посторонних электромагнитных колебаний (помех). Параметр, характеризующий эту способность количественно. Наиболее распространена частотная селективность.
ТРАНЗИСТОР (от англ. transfеr — переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно из кремния или германия), содержащего не менее трех областей с различной — электронной и дырочной — проводимостью.
ТРАНСФОРМАТОР (от лат. transformo — преобразую), устройство для преобразования каких-либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор).
Именной указатель
Лосев Олег Владимирович (1903-42), российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках («свечение Лосева», фотоэлектрический эффект и др.).
Маркони Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).
Поляков Владимир Тимофеевич – известный советский и российский радиотехник, специалист по радиоприемным устройствам
Попов Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.
Рыбкин Петр Николаевич – ассистент А. С. Попова, первый использовал в радиоприемнике высокоомные телефоны.
Характеристики выпрямительного диода и его применение
Выпрямительный диод (VD) — это радиоэлемент, предназначенный для преобразования переменного тока в постоянный. Существует немало устройств для выполнения подобной задачи, но диоды являются наиболее востребованными. Их применяют в умножителях напряжения, блоках питания и выпрямителях переменного тока.
Общая характеристика и принцип работы
Выпрямительные диоды способны замыкать и размыкать цепи, а также коммутировать электрические сигналы. Их принцип работы основан на определенных особенностях p-n перехода. Суть заключается в том, что у каждого диода есть два вывода или электрода. Один из них — анод, а второй — катод. Анод соединен с p-слоем, а катод примыкает к n-слою.
Между p- и n-слоем имеется небольшая область без подвижных носителей заряда, обладающая высоким электрическим сопротивлением. Она называется запирающим слоем и определяет потенциальный барьер.
Когда на p-n переход поступает внешнее напряжение, создающее электрополе, направленное противоположно полю запирающего слоя, то данный слой начинается уменьшаться по толщине. Окончательно он исчезает при напряжении 0.4–0.6 Вольт. При этом существенно возрастает ток, который называется прямым.
Подача внешнего питания другой полярности приводит к увеличению запирающего слоя и возрастанию сопротивления p-n перехода. В этом случае ток создается неосновными носителями заряда. Он будет иметь незначительную величину даже при сравнительно большом напряжении.
Следовательно, прямой ток создается основными носителями заряда, а обратный — неосновными. Диоды-выпрямители пропускают прямой (положительный) электроток по направлению от анода к катоду.
Как работает выпрямительный диод проще всего объяснить, используя схему простого однополупериодного выпрямителя.
Диодный однополупериодный выпрямитель на протяжении положительного полупериода пребывает в открытом положении, поэтому ток проходит через него и поступает на нагрузку. Во время отрицательного полупериода диод запирается, и напряжение не поступает на нагрузку. В результате на выход поступают импульсы, которые состоят только из положительных полупериодов и называются постоянным током.
Разновидности диодов
Основным элементом выпрямляющего диода является полупроводник. Чаще всего в качестве него применяется кристалл кремния или германия. Кремневые диоды используются чаще, чем германиевые. Это связано с тем, что последние отличаются более высокой величиной обратных токов, что существенно ограничивает допустимую величину обратного напряжения. Для германиевых полупроводников этот показатель не превышает 400 Вольт. У кремниевых диодов максимальное обратное напряжение может достигать 1500 Вольт.
Кроме того, кремниевые полупроводники отличаются более высокой рабочей температурой. Но с этим достоинством связан и существенный минус данных радиоэлементов. Если обратное напряжение приводит к их пробою, то он носит тепловой характер. Это означает, что пробитый кремниевый выпрямитель практически всегда необходимо заменять новым.
Преимуществом германиевых считается небольшое падение напряжения при прямом электротоке.
В зависимости от технологии изготовления полупроводниковые диоды делятся на точечные и плоскостные. Первые состоят из небольшой пластины n-типа и стальной иглы, создающей в месте контакта p-n переход. Основными конструктивными элементами плоскостных полупроводниковых диодов являются две соединенные вместе пластины разной электропроводности.
Максимально допустимый прямой ток определяет мощность выпрямительных диодов. Исходя из этой характеристики, их принято делить на:
- Слаботочные. Они отличаются небольшими габаритами и малым весом. Выпускаются преимущественно в пластмассовых корпусах. Выпрямляемый ток не превышает 0.3 Ампер.
- Диоды средней мощности. Их корпуса изготавливаются из металла, а на одном из выводов (катоде) присутствует резьба, с помощью которой радиоэлемент можно надежно зафиксировать на радиаторе, используемом для отвода тепла. Способны выпрямлять переменный ток от 0.3 до 10 Ампер.
- Силовые полупроводниковые выпрямители. Рассчитаны на прямой ток, превышающий 10 А. Выпускаются в металлокерамических или металлостеклянных корпусах таблеточного или штыревого типа.
Существуют еще такие разновидности выпрямительных диодов, как:
- Импульсные. Их используют в маломощных электронных схемах. Главной их особенностью является небольшое время, затрачиваемое на переход от закрытого состояния к открытому, и наоборот. Это примерно 100 мкс.
- Обращенные. При обратном включении они оказывают небольшое сопротивление проходящему току и намного большее при прямом включении. Обращенные диоды предназначены в основном для выпрямления небольших сигналов с амплитудой напряжения не более 1 Вольта.
- Выпрямители Шоттки. Они отличаются небольшим сопротивлением, поэтому используются для выпрямления значительных токов, достигающих десятки ампер. Внутри выпрямителей Шоттки не накапливается тепловая энергия, поэтому отсутствует и рассасывание неосновных носителей электрозарядов.
- Стабилитроны. Способны сохранять все свои рабочие характеристики даже в режиме электрического пробоя. За рубежом их называют диодами Зенера.
- Диодный мост. Данная схема собирается из четырех элементов. Используется с целью улучшения качества преобразования переменного тока в постоянный. Отличается тем, что способен пропускать ток на протяжении каждого полупериода. Мосты выпускаются в виде устройства, заключенного в корпус из пластика.
Все виды выпрямительных диодов отличаются внешним видом, но их выбор упрощает соответствующее обозначение, нанесенное на корпус. Каталоги с маркировкой и УГО данных полупроводниковых элементов представлены в специальном справочнике. Следует отметить, что маркировка импортных диодов отличается от отечественных. Буквенно-цифровое обозначение отечественных диодов регламентирует ОСТ 11366.919-81. Расшифровка маркировки согласно этому документу представлена на рисунке ниже.
Следовательно, если на корпусе имеется маркировка КД202А, то это будет кремниевый выпрямительный диод средней мощности исполнения А.
Существуют требования и относительно условных графических изображений диодов на схемах.
Параметры диодного выпрямителя
Каждый тип диодов имеет свои предельно допустимые и рабочие характеристики. Основные параметры выпрямительных диодов представлены в таблице:
Как правило, к данной информации обращаются тогда, когда элемент из схемы выпрямителей недоступен и ему необходимо найти замену. В большинстве случаев аналоги выбираются по первым пяти параметрам из таблицы, но иногда еще следует учитывать такие характеристики выпрямительных диодов, как рабочая температура и частота.
Очень важный параметр диодов — это их прямой ток. Его стоит учитывать, когда происходит замена исходных диодов на аналоги, а также в случае создания самодельных устройств. В зависимости от различных модификаций показатели значения прямого тока могут достигать величин в несколько десятков и даже сотен ампер. Поэтому в мощных устройствах диодные мосты обязательно устанавливают в специальном корпусе вместе с охлаждающим радиатором, который не позволяет перегреваться кристаллу в диоде.
Некоторые подвиды диодов, например Шоттки, очень восприимчивы к перепадам обратного напряжения, поэтому могут быстро прийти в негодность. А вот кремниевые полупроводники, наоборот, являются устойчивыми к повышению показателей обратного напряжения. Они способны прослужить длительный период, а именно до тех пор, пока кристалл на проводнике не перегреется и не выйдет из строя, для чего необходимо много времени.
Вольт-амперная характеристика
Не всегда на практике расчетные величины полностью совпадают с теоретическими основными параметрами полупроводниковых элементов. Например, вольт-амперная характеристика используемого выпрямительного диода или ВАХ зависит от показателей передвижения электрического тока в проводнике в прямом и обратном направлении. Значение прямого тока на порядок больше обратного, а значение прямого напряжения на порядок меньше. Когда обратное напряжение достигает своей пороговой величины, обратный ток резко возрастает и происходит пробой p-n слоя.
Зависимости прямых и обратных токов и напряжений можно представить в виде графика. Он состоит из двух ветвей — прямой и обратной. Прямая расположена в первом квадранте и отражает максимальную проводимость диода при прямом напряжении. Обратная находится в третьем квадранте и соответствует низкой проводимости при обратном напряжении. Ток при низкой проводимости через полупроводник не проходит.
ВАХ выпрямительного полупроводникового диода зависит от температуры. С повышением данного параметра уменьшается прямое напряжение. Имеют значение и такие свойства графика, как резкая асимметрия. Смещение прямой ветви указывает на высокую проводимость, а обратной — на низкую.
В областях с высокой разницей потенциалов зависимость тока от напряжения становится практически линейной.
Где применяется на практике
С развитием научно-технического прогресса применение выпрямительных диодов стало необходимостью. Они используются в таких узлах и механизмах, как:
- Блоки питания двигателей наземных, водных и воздушных транспортных средств, промышленных станков, буровых установок.
- Диодные мосты для сварочных аппаратов.
- Выпрямительные установки для гальванических ванн.
- Установки для очистки воздуха и воды.
- Высоковольтные линии передач.
Схемы выпрямительных устройств делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Самую простую двухполупериодную схему можно построить на основе двух однополупериодных. В такой выпрямительной схеме присутствуют два диода и один резистор. Если же применить не два, а четыре диода, тогда коэффициент полезного действия существенно повысится.
Качество выпрямителя отражает коэффициент выпрямления. Его величина определяется соотношением прямого и обратного токов. Чем выше коэффициент, тем лучше выпрямитель справляется со своей работой.
Диоды на практике применяются не только в качестве выпрямительных, но и детекторных приборов. Из диодных выпрямителей очень легко можно сконструировать работающие ограничители сигнала. Для этого необходимо подключить два диода параллельно. В таком положении они будут выступать отличной и эффективной защитой для входа усилителя. Например, этот способ используют для микрофонного усилителя, так как он способствует максимальному увеличению качества и уровня сигнала.
Диоды «вживают» в логические приборы, а также рации, теленяни и другие коммутаторы, задачей которых является передача четких бесперебойных удаленных сигналов.
Востребованными на данный момент являются и светодиоды. Еще несколько десятков лет назад их применяли лишь в качестве индикаторов внутри различных приборов. На сегодняшний день светодиодами оснащены и такие простые устройства, как ручные фонарики, и более сложная техника, например, жидкокристаллические телевизоры.
Подводя итог, можно сказать, что современные выпрямительные диоды представлены в большом ассортименте. Они отличаются и своим конструктивным исполнением, и рабочими характеристиками. При выборе нужного радиоэлемента следует руководствоваться данными, приведенными в справочных пособиях.
Для чего служит диод vd1
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
Диод — это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
Вот это и есть тот самый PN-переход
Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
Осциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.
Ничего себе! Диод срезал только положительную часть синусоиды!
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр — это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор — (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты — одна из разновидностей диодных сборок.
На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Диодные ограничители
Всем доброго времени суток! Продолжаю рассказывать про импульсные устройства и всё, что с ними связано. В предыдущей статье я рассказывал про RC и RL цепи и как они влияют на прохождение через них различных импульсов. Сегодняшняя статья про амплитудные ограничители и фиксаторы уровня сигнала. Что же это такое и зачем они нужны?
Амплитудные ограничители. Введение
Амплитудный ограничитель представляет собой электронное устройство, которое имеет пороги ограничения, за пределами которых входной сигнал практически не изменяется и остаётся равным пороговому значению. Исходя из этого, можно выделить три типа амплитудных ограничителей:
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
- ограничитель по максимуму или сверху. В данном случае сигнал на выходе устройства при превышении порогового значения тока или напряжения остаётся практически неизменным;
- ограничитель по минимуму или снизу. В таком устройстве устройства остаётся неизменным при значении входного сигнала меньше некоторого порогового значения;
- двухсторонний ограничитель. Такое устройство ограничивает сигнал и по максимуму и по минимуму входного сигнала.
Абсолютное большинство амплитудных ограничителей строят на основе ключевых свойств радиоэлектронных элементов, поэтому основным элементом ограничителей являются диоды или транзисторы в ключевом режиме работы. Диодные ограничители довольно простые по устройству, поэтому наиболее часто встречающиеся. Амплитудные ограничители на основе транзисторов несколько сложнее по устройству, но кроме амплитудного ограничения они позволяют усиливать сигнал, поэтому их ещё называют усилителями-ограничителями.
Различают также последовательные и параллельные ограничители. Эта их особенность зависит от способа включения ключевого элемента относительно нагрузки. Необходимо отметить, что последовательные ограничители включаются в работу, когда ключ разомкнут, а параллельные ограничители работают в режиме ограничения в случае замкнутого ключевого элемента.
Последовательные диодные ограничители
Как говорилось выше, ограничители бывают по максимуму, по минимуму и двухсторонние, которые ограничивают уровень сигнала сверху и снизу. Устройство последовательных диодных ограничителей довольно простое и оно основано на ключевом свойстве полупроводникового диода: в открытом состоянии диод пропускает электрический ток, а в закрытом – электрический ток через диод не проходит.
Последовательные диодные ограничители состоят из диода (VD1), источника смещения (ECM) и сопротивления нагрузки (R1). Различие состоит в том, как подключен диод: в ограничителе по минимуму диод включен в прямом направлении, а в ограничителе по максимуму – в обратном направлении.
Рассмотрим принцип работы ограничителя по минимуму. При значении входного напряжения UВХ меньше, чем напряжение смещения ЕСМ, диод VD1 будет находиться в закрытом состоянии и напряжение на выходе UВЫХ будет соответствовать напряжению смещения. Как только входное напряжение превысит напряжение смещения, диод откроется и через него начнёт проходить электрический ток, а напряжение на выходе будет соответствовать входному напряжению.
Схема и эпюры напряжения последовательного ограничителя по минимуму.
Принцип работы ограничителя по максимуму состоит в следующем. При значении входного напряжения UВХ меньше напряжения смещения диод VD1 находится в открытом состоянии и напряжение на выходе UВЫХ будет равным напряжению смещения. Как только входное напряжение превысит значение напряжения смещения, диод откроется и выходное напряжение будет равным входному напряжению.
Схема и эпюры напряжения последовательного ограничителя по максимуму.
Для ограничения сигналов сверху и снизу используются двухсторонние ограничители, которые чаще всего состоят из двух последовательно включённых односторонних ограничителей.
Схема двухстороннего последовательного ограничителя и эпюры напряжения.
Принцип работы двухстороннего ограничителя заключается в следующем. Напряжение источников смещения выбирают так, чтобы в отсутствии входного сигнала диод VD2 был открыт (ЕСМ1 < ЕСМ2). Уровень ограничения напряжения по максимуму определяется напряжением смещения ЕСМ2, а уровень ограничения по минимуму – напряжением в точке соединения диодов VD1 и VD2, которое соответствует напряжению отпирания диода VD1. Диод VD1 открывается, когда напряжение на входе превышает величину напряжения ЕСМ1. При этом напряжение на выходе ограничителя примерно равно напряжению на входе, а когда входное напряжение превышает величину ЕСМ2, то диод VD2 закрывается и напряжение на выходе будет равно напряжению ЕСМ2.
Довольно часто вместо предыдущей схемы используется эквивалентная схема двухстороннего ограничителя с общим источником смещения.
Схема двухстороннего последовательного ограничителя с общим источником смещения.
Расчёт данной схемы аналогичен предыдущей, если пересчитать её параметры с помощью следующих соотношений:
Расчёт последовательных диодных ограничителей
Простейший последовательный диодной ограничитель представляет собой схему, состоящую из диода VD1, включённого последовательно с резистором R1. Данная схема в отсутствии дополнительного источника напряжения смещения Есм является ограничителем с нулевым уровнем ограничения. Фактически данная схема представляет собой диодный ключ, вследствие конечных значений сопротивления закрытого и открытого ключа, данную схему можно преобразовать в делитель напряжения на резисторах, а выходное напряжение тогда определится по следующей формуле:
- где UBX – входное напряжение,
- R1 – сопротивление нагрузки,
- RVD – сопротивление диода в прямом направлении.
В случае использования дополнительного источника напряжения смещения выходное напряжение определится по следующей формуле:
- где Есм – напряжение смещения.
Из вышесказанного можно сделать вывод, что при сопротивлении нагрузки R1 >> RVD, то есть чем больше сопротивление нагрузки R1 по отношению к сопротивлению диода в прямом направлении, тем больше напряжение на выходе соответствует входному напряжению.
Параллельные диодные ограничители
Так же как и последовательные диодные ограничители, параллельные диодные ограничители бывают по максимуму, по минимуму и двухсторонние. Основное отличие в принципе работы параллельных ограничителей от последовательных ограничителей состоит в том, что параллельные пропускают сигнал, когда диод находится в закрытом состоянии, и ограничивают, когда диод открыт.
Параллельные диодные ограничители в основном состоят из следующих элементов: источник напряжения смещения ЕСМ служит для установки уровня ограничения, сопротивление R1 создает вместе с диодом VD1 делитель напряжения и непосредственно диод VD1 выполняет роль ключевого элемента. Различие между ограничителями сверху и снизу, как уже говорилось выше, состоит в том, как подключен диод.
Рассмотрим схему и принцип работы параллельного ограничителя по минимуму. При значении входного напряжения UВХ меньше, чем напряжение смещения ЕСМ, диод VD1 будет находиться в открытом состоянии, а так как R1 и сопротивление диода в открытом состоянии невелико, то всё напряжение будет оставаться на сопротивлении R1, а на выходе напряжение UВЫХ будет равно сумме напряжений ЕСМ и падению напряжения на диоде. Как только входное напряжение превысит напряжение смещения, диод закроется и так как сопротивление диода в закрытом состоянии очень велико, то на выходе ограничителя будет напряжение равное входному напряжению.
Схема и эпюры напряжения параллельного ограничителя по минимуму.
Принцип работы параллельного ограничителя по максимуму отличается от параллельного ограничителя по минимуму только направлением включения диода. Таким образом, при входном напряжении UВХ меньшем напряжении смещения ЕСМ диод будет закрыт и всё входное напряжение будет приложено к нагрузке. Как только входное напряжение превысит значение равное сумме напряжения смещения и напряжения падения на диоде, то диод откроется, и напряжение на выходе останется равным сумме напряжения смещения и напряжения падения на диоде.
Схема и эпюры напряжения параллельного ограничителя по максимуму.
Как говорилось выше, существуют также двухсторонние ограничители параллельного типа, которые представляют собой последовательно соединенные параллельные ограничители по минимуму и по максимуму. По принципу работы двухсторонние ограничители аналогичны односторонним ограничителям, но в этом случае резистор R1 является общим для двух последовательно включенных ограничителей.
Схема и эпюры напряжения параллельного двухстороннего ограничителя.
Расчёт параллельных диодных ограничителей
Простейший параллельный диодный ограничитель представляет собой схему состоящую из диода VD1, включённого параллельно нагрузке и ограничительного резистора R1. В отсутствии источника напряжения смещения Есм данная схема является амплитудным ограничителем с нулевым уровнем ограничения. Как и схема с последовательным диодом, данную схему можно представить в виде делителя напряжения на резисторах, в которой выходное напряжение будет равно:
- где UBX – входное напряжение,
- R1 – ограничительный резистор,
- RVD – сопротивление диода в обратном направлении.
В случае использования дополнительного источника напряжения смещения выходное напряжение определится по следующей формуле:
- где Есм – напряжение смещения.
Из вышесказанного можно сделать вывод, что при сопротивлении нагрузки R1 << RVD, то есть чем меньше ограничительное сопротивление по отношению к сопротивлению диода в обратном направлении, тем напряжение на выходе больше соответствует входному напряжению.
Амплитудные ограничители находят самое широкое распространение в импульсных схемах и могут выполнять следующие функции:
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ