Как найти площадь кольца
Перейти к содержимому

Как найти площадь кольца

  • автор:

Как найти площадь кольца

Прощать кольцаЧему равна площадь кольца ограниченного двумя окружностями, если:

Прощать кольца по толщинеЧему равна площадь кольца ограниченного двумя окружностями, если:

Площадь кольца онлайн калькулятор (2 способа)

Онлайн калькулятор площади кольца может вычислить плошадь двумя различными методами.

Сделав расчет на этом калькуляторе площади кольца Вы сможете получить детальное пошаговое решение с ответом. Также Вы сможете понять алгоритм нахождения площади кольца различными методами.Тем самым Вы усвоите пройденный материал и закрепите полученные знания.

  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.
Формула площади кольца Формула площади кольца По радиусамгде R — радиус внешней окружности, r — радиус внтуренней окружности.

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.
Формула площади кольца Формула площади кольца По диаметрамгде D — диаметр внешней окружности, d — диаметр внутренней окружности.

Задача: определить площадь кольца, если известны радиусы

назад к списку всех задач

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Рисунок кольца для задачи

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O — общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула разницы площадей

Формула площади внешнего круга.

площадь внешнего круга

Формула площади внутреннего круга.

площадь внутреннего круга

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Формула площади кольца

Полученный результат

Ответ:

ответ

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

Калькулятор для расчета площади кольца

назад к списку всех задач

Подробности Автор: Сергей Кондратов Опубликовано: 06 сентября 2017 Обновлено: 13 августа 2021

Как найти площадь кольца ограниченного двумя окружностями

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула
Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула
Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r
Формулы
Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²

Найти площадь кольца образованного двумя окружностями

Площадь кольца

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности
у внутренней окружности

Площадь кольца по толщине и любому другому параметру

Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула
Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула
Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r
Формулы
Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O — общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, R12

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,900
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Задача: определить площадь кольца, если известны радиусы

Условие задачи:

Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.

Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см

Пояснение к рисунку:
O — общий центр окружностей

Найти площадь кольца: S

Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.

Формула площади внешнего круга.

Формула площади внутреннего круга.

После подстановки и преобразования, получаем следующее выражение для площади кольца.

Ответ:

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *