Дроби
Дроби бывают числовыми и алгебраическими. Числовыми называют дроби, составленные из чисел, например:
Дроби, содержащие буквы (переменные), называют алгебраическими, например:
Значение алгебраических дробей зависит от значений входящих в них букв. К примеру, значение дроби равно при а при эта дробь равна
Если знаменатель дроби равен нулю, то дробь не имеет значения. Так, дробь не имеет значения при и
Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель дроби отличен от нуля. Например, дробь равна нулю при а дробь при нулю не равна, так как при не только её числитель равен нулю, но и знаменатель обращается в нуль.
Как решить уравнение если дробь равна нулю
Решение уравнений «дробь равна нулю», описание метода, примеры
Отдельного внимания заслуживают уравнения «дробь равна нулю», то есть, уравнения f(x)/g(x)=0 , где f(x) и g(x) – произвольные выражения с переменной x . В этой статье мы, во-первых, разберем, в чем состоит метод решения таких уравнений, на чем он базируется и как обосновывается. А во-вторых, запишем алгоритм решения уравнений «дробь равна нулю» и решим несколько характерных примеров.
В чем состоит метод решения и на чем он базируется?
Метод решения уравнений «дробь равна нулю», то есть уравнений, имеющих вид f(x)/g(x)=0 , состоит в нахождении решения через решение уравнения «числитель равен нулю», то есть, через решение уравнения f(x)=0 . Пример для наглядности: решение уравнения можно найти через решения уравнения (x−1)·(x 2 −4)=0 .
Базируется метод на следующем утверждении:
Множество решений уравнения f(x)/g(x)=0 совпадает с множеством решений уравнения f(x)=0 на ОДЗ для уравнения f(x)/g(x)=0 . В частности, решением уравнения 0/g(x)=0 является любое число из ОДЗ для этого уравнения, а уравнение C/g(x)=0 , где С – отличное от нуля число, не имеет решений.
Докажем это утверждение в следующем пункте.
Обоснование метода
В основе доказательства утверждения из предыдущего пункта лежит хорошо известный факт: дробь a/b , b≠0 равна нулю тогда и только тогда, когда ее числитель есть нуль. Этот факт вытекает из определения дроби (дробь a/b , b≠0 есть такое число c , что b·c=a ) и из того, что произведение двух чисел тогда и только тогда равно нулю, когда одно из чисел есть нуль.
Начнем с доказательства частных случаев.
Докажем, что решение уравнения 0/g(x)=0 есть ОДЗ для него. В силу того, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, равенство 0/g(x0)=0 является верным для любого числа x0 , при котором оно имеет смысл. Очевидно, что равенство 0/g(x0)=0 имеет смысл тогда и только тогда, когда x0 принадлежит ОДЗ для уравнения 0/g(x)=0 . Значит, решение уравнения 0/g(x)=0 есть ОДЗ для этого уравнения.
Докажем, что уравнение C/g(x)=0 , где С – отличное от нуля число, не имеет решений. Так как дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, то равенство C/g(x0)=0 , C≠0 не может быть верным ни для какого числа x0 . Следовательно, уравнение C/g(x)=0 , C≠0 не имеет решений.
Теперь будем считать, что числитель дроби f(x)/g(x) есть выражение с переменной, а не число, и докажем, что множество решений уравнения f(x)/g(x)=0 совпадает с множеством решений уравнения f(x)=0 на ОДЗ для уравнения f(x)/g(x)=0 . Для этого достаточно доказать два момента: первый — что любой корень уравнения f(x)/g(x)=0 является корнем уравнения f(x)=0 , второй — что любой корень уравнения f(x)=0 , принадлежащий ОДЗ для уравнения f(x)/g(x)=0 , является корнем уравнения f(x)/g(x)=0 .
Приступаем к доказательству первой части. Пусть x0 – корень уравнения f(x)/g(x)=0 . Тогда f(x0)/g(x0)=0 – верное числовое равенство. Из этого неравенства и из того факта, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, следует, что f(x0)=0 . А это равенство означает, что x0 – корень уравнения f(x)=0 .
Первая часть доказана. Приступаем к доказательству второй части.
Пусть x0 принадлежит ОДЗ для уравнения f(x)/g(x)=0 и при этом x0 — корень уравнения f(x)=0 . Так как x0 принадлежит ОДЗ для уравнения f(x)/g(x)=0 , то дробь f(x0)/g(x0) имеет смысл. Так как x0 – корень уравнения f(x)=0 , то f(x0)=0 – верное числовое равенство. Из этих результатов, а также из того факта, что дробь равна нулю тогда и только тогда, когда ее числитель есть нуль, следует, что дробь f(x0)/g(x0) равна нулю, то есть, f(x0)/g(x0)=0 . А это равенство означает, что x0 – корень уравнения f(x)/g(x)=0 .
Так доказана вторая часть и все утверждение в целом.
Алгоритм решения уравнений «дробь равна нулю»
Доказанное утверждение позволяет записать алгоритм решения уравнений «дробь равна нулю»:
- Если уравнение имеет вид 0/g(x)=0 , то надо найти область допустимых значений для этого уравнения – она и есть искомое решение уравнения.
- Если уравнение имеет вид C/g(x)=0 , C – отличное от нуля число, то сразу записываем ответ – нет решений.
- Если уравнение имеет вид f(x)/g(x)=0 , где f(x) – выражение с переменной, а не число, то
- приравниваем числитель к нулю и решаем полученное уравнение f(x)=0 ,
- отсеиваем посторонние корни (отбрасываем все корни, не принадлежащие ОДЗ для исходного уравнения, как посторонние).
Заметим, что записанный алгоритм находится в полном согласии с принципами решения дробно-рациональных уравнений, имеющих вид «дробь равна нулю». Принципы решения таких уравнений раскрываются на уроках алгебры в 8 классе. Оттуда нам известно, что для решения дробно-рационального уравнения, имеющего вид f(x)/g(x)=0 нужно приравнять к нулю числитель, решить полученное уравнение и отбросить те корни, при которых обращается в нуль знаменатель [1, с.26-30]. По сути, отбрасывание значений, при которых обращается в нуль знаменатель решаемого дробно-рационального уравнения f(x)/g(x)=0 , есть отсеивание посторонних корней по ОДЗ, так как в этом случае ОДЗ определяется условием g(x)≠0 .
Решение примеров
Рассмотрим решения трех характерных уравнений «дробь равна нулю»: с нулем в числителе, с отличным от нуля числом в числителе, и с выражением с переменной в числителе. Ими мы закроем все три типичные ситуации.
Сначала решим уравнение с нулем в числителе:
.
Решите уравнение
Теперь решим уравнение
, в числителе которого отличное от нуля число.
Решите уравнение
Осталось рассмотреть решение уравнения «дробь равна нулю» в случае, когда в числителе находится выражение с переменной, а не число. В этом случае, согласно алгоритму, нужно приравнять к нулю числитель, решить полученное уравнение и отсеять посторонние корни.
Решите уравнение
Решение уравнений с дробями
О чем эта статья:
5 класс, 6 класс, 7 класс
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Что поможет в решении:
- если а не равно нулю, то у уравнения единственный корень: х = −b : а;
- если а равно нулю, а b не равно нулю — у уравнения нет корней;
- если а и b равны нулю, то корень уравнения — любое число.
Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:
Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:
На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
-
Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
Дробь равна нулю
Когда дробь равна нулю?
Дробная черта — это знак деления. При делении нуля на любое число, кроме нуля, получим нуль. На нуль делить нельзя.
Таким образом, дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля.
Решение многих задач в алгебре сводится к решению дробно рациональных уравнений, которые, в свою очередь, сводятся к уравнению типа «дробь равна нулю».
Схематически решение уравнения типа «дробь равна нулю» можно изобразить так:
Таким образом, чтобы решить уравнение типа «дробь равна нулю», надо:
1) Найти значения переменной, при которых знаменатель обращается в нуль.
2) Приравнять к нулю числитель и решить получившееся уравнение.
3) Проверить, нет ли среди корней уравнения «числитель равен нулю» значений, при которых знаменатель обращается в нуль. Если есть, их следует исключить.
4) Записать ответ.
Дробь равна нулю, если числитель равен нулю, а знаменатель — отличен от нуля, поэтому это уравнение равносильно системе
Находим значения переменной, при которых знаменатель обращается в нуль:
Можно приравнять выражение, стоящее в левой части неравенства, к нулю, и решать как обычное неполное квадратное уравнение. Можно решать как уравнение, только вместо знака равенства каждый раз писать «≠».
При этих значениях переменной выражение, стоящее в левой части уравнения, не имеет смысла (так как на нуль делить нельзя).
Решаем уравнение, в котором числитель равен нулю.
Ищем дискриминант. Так как b= -10 — чётное число, здесь удобнее воспользоваться формулой для D/4:
Так как D/4>0, уравнение имеет два корня:
Первый из корней — посторонний (он не удовлетворяет условию x≠7), поэтому в ответ записывает только корень 3. Ответ: 3.
Это уравнение равносильно системе
Его корни — значения переменной, при котором выражение, стоящее в левой части уравнения, не имеет смысла.
Общий множитель 4x выносим за скобки
Второй корень не подходит (он не удовлетворяет условию x≠0,5).
Переходим к решению уравнения 3x-12=0. Это — линейное уравнение. Неизвестное — в одну сторону, известное — в другую с противоположным знаком:
Полученный корень является посторонним, так как не удовлетворяет условию x≠4. Значит, исходное уравнение типа «дробь равна 0» корней не имеет.
Закончите пердложение «дробь равна нулю тогда и только тогда когда ее числитель. «.?
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Кроссворд «Текстовый редактор»
2. Минимальная единица текстовой информации.
3. Набор букв алфавита с общим стилем изображения.
6. Последовательность символов, ограниченная специальными символами конца…
8. Изменение содержания текста, исправление ошибок.
9. Перемещение фрагмента текста в буфер обмена. По вертикали:
1. Последовательность символов, ограниченная с двух сторон
служебными словами (скобки, пробел, запятая).
2. Произвольная последовательность символов между левой
и правой границами документа.
4. Основное устройство ввода текста.
5. Помещение копии фрагмента текста в буфер обмена.
7. Способ представления документа, в котором фрагменты текста или изображения выполняют роль ссылок для перехода к другим объектам или документам.
Sorry, you have been blocked
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
What can I do to resolve this?
You can email the site owner to let them know you were blocked. Please include what you were doing when this page came up and the Cloudflare Ray ID found at the bottom of this page.
Cloudflare Ray ID: 7a6d76f4ab2168b5 • Your IP: Click to reveal 88.135.219.175 • Performance & security by Cloudflare