Как найти площадь абстрактной фигуры 4 класс
Перейти к содержимому

Как найти площадь абстрактной фигуры 4 класс

  • автор:

 

Как найти периметр и площадь в начальной школе

Площадь и периметр – значения, вычисление которых формирует пространственное мышление у детей, а это представляет сложность в начальной школе.

Освоение величин необходимо для приобретения практических навыков в жизни и дальнейшего изучения основ математики.

В разных учебных программах начальной школы эти темы изучают во 2-4 классе. Например, в учебнике математики Рудницкой, тема «Периметр и площадь» изучается во 2 классе.

Почему ученики начальной школы путают понятия «площадь» и периметр» и как помочь ребенку разобраться в теме, рассмотрим подробнее.

Отличие площади от периметра

В начальной школе находят площадь и периметр таких фигур как квадрат, прямоугольник и треугольник.

Отличать понятие «площадь» от «периметра» школьнику начальных классов трудно, потому что это абстракция, а формулы-математические символы, вообще, трудно понять и представить. Поэтому на первых этапах формулы пугают учеников начальной школы, а задачи на нахождение периметра и площади остаются за гранью восприятия. Путаница заключается еще и в том, что учащиеся не видят разницы между линейными и квадратными единицами измерения.

Что такое площадь и периметр?

Площадь определяет размер места, занимаемого фигурой на плоскости или поверхности

Еще можно сказать, что площадь — это пространство, которым полностью заполнена плоская фигура внутри. Измеряют площадь в квадратных единицах длины: квадратных сантиметрах, метрах, миллиметрах, дюймах и т.д.

Площадь обозначают латинской буквой S.

Площадь и периметр Площадь и периметр

Периметр – величина, обозначающая длину контура фигуры или забор вокруг огорода. Если обвести фигуру по контуру, длина получившейся линии будет означать периметр

Измеряют периметр в единицах длины: сантиметры, метры, километры, дюймы и т.д. Периметр обозначают латинской буквой Р.

Оба понятия характеризуют размер фигуры и определяются значением ее сторон, возникает путаница в голове у ученика начальной школы.

5 практических способов усвоения понятий «площадь» и «периметр»

Чтобы научиться быстро отличать площадь от периметра, важно использовать наглядность – предметы-модели и отрабатывать навыки расчета на практике.

1. Игровой метод

При построении на плоскости с помощью конструктора Lego, кубиков или мозаики «полных» и «пустых» фигур можно наглядно объяснить ребенку разницу между двумя величинами.

Игровой способ запоминания понятий площадь и периметр Игровой способ запоминания понятий площадь и периметр

2. Графический способ

Карандашами, фломастерами или красками рисуют на бумаге фигуры или предметы. С помощью объекта, нарисованного одной линией, представляют периметр. Закрашивая фигуру внутри, показывают площадь. Деление прямоугольника на квадраты по длине и ширине – это площадь

Графический способ Графический способ

3. Ассоциативный метод

Ограждение выступает периметром, а пространство внутри него площадью. Рассмотреть наглядно можно поверхность предметов в квартире: стол, табурет, коврик, двери и прочие предметы.

Площадь пола в квартире Площадь пола в квартире

Например: рама в окне – периметр, а вставленное стекло – площадь. Картошка в огороде или линолеум в кухне – это площадь прямоугольника. Ограждение вокруг участка, бордюр вокруг стоянки – периметр.

Периметр забора Периметр забора

4. Построение каркаса

Сделайте каркас квадрата из ниток, спичек, веревки или проволоки – это и есть периметр.

Каркас из спичек Каркас из спичек

5. Метод трафаретов

Для наглядного представления площади и периметра из бумаги или тонкого картона вырезают два трафарета одной фигуры. Один используют для штриховки (площадь), другой для обводки (периметр). Сравнение и наложение их друг на друга.

Трафареты в линейке Трафареты в линейке

Когда ученик научился различать эти две величины, можно переходить к формулам и решению задач.

Как найти площадь прямоугольника и квадрата по формуле

Формула нахождения площади прямоугольника: S = ab, где а – длина, b – ширина прямоугольника.
Площадь квадрата находят по формуле: S = aa, где а – длина и a – ширина квадрата.

Формулы нахождения площади Формулы нахождения площади

Квадрат – это прямоугольник, у которого все углы прямые, а стороны равны. Равные стороны обозначают одинаковой буквой «а».

Рассмотрим, как найти периметр прямоугольника и квадрата по формуле.

В школьных учебниках начальной школы дается определение нахождения периметра: «Периметр — это сумма длин всех сторон фигуры», следовательно, чтобы его найти нужно сложить длины всех сторон.

Формула нахождения периметра прямоугольника: P = а + а + b + b или P=(а+b)*2 или так P = 2ab + 2ab, где буквами а, b обозначена длина и ширина сторон прямоугольника.

Формулы нахождения периметра прямоугольника и квадрата Формулы нахождения периметра прямоугольника и квадрата

У прямоугольника длина и ширина разные, они обозначаются «а» и «b». Противоположные стороны равны в прямоугольнике, следовательно, в формуле они встречаются 2 раза или сумма длины и ширины умножается на 2.

Периметр квадрата находят по формуле: P = а + а + а + а или P=4*а, где а – длина каждой стороны с одинаковой длиной.

Примеры задач на нахождение периметра и площади

Задача № 1

Маленькому щенку купили коврик прямоугольной формы. Сколько места займет коврик в прихожей, если его длина 4 дм, а ширина 3 дм?

Решение:
Для того чтобы определить, сколько места займет коврик, нужно рассчитать его площадь (размер поверхности). Для этого умножаем ширину на длину: 3 x 4 = 12 дм²

Ответ: площадь коврика составляет 12 дм² (1200 см²).

Задача № 2

Площадь квадратного балкона в бабушкиной квартире равна 9 м². Определите периметр балкона.

Решение:
У квадрата все стороны равны. Площадь определяется умножением длины на ширину. Число 9 можно представить в виде произведения двух одинаковых чисел.

  1. 9 : 3 = 3 м (ширина и длина)
  2. 3 + 3 + 3 + 3 = 3 x 4 = 12 м (периметр)

Ответ: периметр балкона составляет 12 м.

Задача № 3

Для украшения детской площадки к Новому году было решено купить гирлянду из лампочек и укрепить ее на ограждении. Длина прямоугольной детской площадки 5 м, ширина 6 м. Найдите периметр для определения нужной длины гирлянды.

  • Первый способ: 5 + 5 + 6 + 6 = 22 м
  • Второй способ: 2 x 5 + 2 x 6 = 22 м
  • Третий способ: 2 x (5 + 6) = 22 м

Ответ: периметр детской площадки и длина гирлянды составляет 22 м.

Пишите в комментариях, какие способы разведения понятий «площадь» и «периметр» помогли Вам или вашему ребенку.

Формула Пика

Формула Пика. Рассказ о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

Формула Пика

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём площадь треугольника:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Ещё пример. Найдём площадь параллелограмма:

M = 18 (обозначены красным)

N = 20 (обозначены синим)

Найдём площадь трапеции:

M = 24 (обозначены красным)

N = 25 (обозначены синим)

Найдём площадь многоугольника:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

Понятно, что находить площадь трапеции, параллелограмма, треугольника проще и быстрее по соответствующим формулам площадей этих фигур. Но знайте, что можно это делать и таким образом.

А вот когда дан многоугольник, у которого пять и более углов эта формула работает хорошо.

Теперь взгляните на следующие фигуры:

Это типовые фигуры, в заданиях стоит вопрос о нахождении их площади. Такие или подобные им будут на ЕГЭ. При помощи формулы Пика такие задачи решаются за минуту. Например, н айдём площадь фигуры:

M = 11 (обозначены красным)

N = 5 (обозначены синим)

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Конечно, можно и эти «микрофигурки» дробить на более простые фигуры (треугольники, трапеции). Способ решения выбирать вам.

Найдём площадь фигуры:

Опишем около неё прямоугольник:

Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:

В будущем будем рассматривать задания на нахождение площади, связанные с окружностями построенными на листе в клетку, не пропустите! На этом всё. Успехов вам!

Задачи на нахождение площади сложных фигур

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

 

Конспект урока «Задачи на нахождение площади сложных фигур»

Давайте вспомним, как найти площадь прямоугольника. Чтобы найти площадь прямоугольника, надо длину умножить на ширину.

Вот формула для нахождения площади прямоугольника:

S = a · b

В этой формуле латинской буквой S обозначается площадь, буквами a и b – стороны прямоугольника.

Выполним задание, в котором надо найти площадь прямоугольника со сторонами 5 см и 3 см.

Решение. Итак, чтобы найти площадь прямоугольника, надо его длину умножить на ширину.

Произведение чисел 5 и 3 равно 15. Значит, площадь прямоугольника равна 15 квадратным сантиметрам. Не забудьте, что площадь измеряется именно в квадратных единицах. В данной задаче это квадратные сантиметры. Также важно помнить, что длина и ширина должны быть выражены в одинаковых единицах длины.

Ответ: площадь прямоугольника равна 15 см 2 .

Теперь давайте найдём площадь квадрата со стороной 4 см.

Решение. У этого квадрата каждая сторона равна 4 см, поэтому умножим 4 на 4 и получится, что площадь квадрата равна 16 квадратным сантиметрам.

Ответ: площадь квадрата равна 16 см 2 .

Ну а сейчас перейдём к решению задач, в которых нам надо будет найти площадь сложных фигур.

Найдите площадь фигуры, изображённой на рисунке.

Эта фигура не является ни прямоугольником, ни квадратом. Но мы можем разделить эту фигуру на два прямоугольника, например, вот таким образом.

А площади прямоугольников мы легко можем найти с помощью известной формулы.

Напомним, что противоположные стороны прямоугольника равны.

Итак, стороны первого прямоугольника равны 5 см и 4 см.

5 · 4 = 20 (см 2 ) – площадь первого прямоугольника

Найдём площадь второго прямоугольника.

Ширина этого прямоугольника равна 2 см.

7 – 4 = 3 (см) – длина второго прямоугольника

3 · 2 = 6 (см 2 ) – площадь второго прямоугольника

Мы нашли площади прямоугольников, из которых состоит сложная фигура. Чтобы найти площадь этой фигуры, надо сложить найденные площади.

20 + 6 = 26 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 26 см 2 .

Площадь этой сложной фигуры найти другим способом. Можно разделить её на два прямоугольника вот таким образом.

Найдём площадь первого прямоугольника.

Одна его сторона равна 4 см.

5 – 2 = 3 (см) – длина стороны первого прямоугольника

4 · 3 = 12 (см 2 ) – площадь первого прямоугольника

Теперь найдём площадь второго прямоугольника.

7 · 2 = 14 (см 2 ) – площадь второго прямоугольника

12 + 14 = 26 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 26 см 2 .

Решим следующую задачу.

Найдём площадь ещё одной фигуры, изображённой на рисунке.

Чтобы найти площадь этой фигуры, тоже разделим её на простые фигуры. Сделаем это вот таким образом.

Получилось 3 прямоугольника.

Найдём площадь первого прямоугольника.

7 · 2 = 14 (см 2 ) – площадь первого прямоугольника

Найдём площадь второго прямоугольника.

7 – 4 = 3 (см) – длина одной стороны второго прямоугольника

8 – 2 – 3 = 3 (см) – длина другой стороны второго прямоугольника

Получается, что это квадрат, так как длина всех его сторон равна 3 см.

3 · 3 = 9 (см 2 ) – площадь квадрата

И найдём площадь последнего прямоугольника.

Его ширина равна 3 см. Длина равна 7 см.

3 · 7 = 21 (см 2 ) – площадь третьего прямоугольника

Таким образом, мы нашли площади всех трёх фигур, на которые разделили данную сложную фигуру. Площадь этой сложной фигуры найдём как сумму площадей трёх фигур.

14 + 9 + 21 = 44 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 44 см 2

Отметим, что площадь этой фигуры можно было бы найти, разделив её на простые фигуры и вот таким образом:

И решим ещё одну задачу.

Найдите площадь незаштрихованной фигуры.

На рисунке изображён прямоугольник со сторонами 9 см и 5 см. Внутри этого прямоугольника расположен ещё один прямоугольник со сторонами 5 см и 3 см. Давайте найдём площадь каждого из них.

9 · 5 = 45 (см 2 ) – площадь большего прямоугольника

5 · 3 = 15 (см 2 ) – площадь меньшего прямоугольника

А как найти площадь незаштрихованной фигуры? Площадь этой фигуры найдём, если из площади большего прямоугольника вычтем площадь меньшего прямоугольника.

Площадь фигур

Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните! !

Для вычисления площади квадрата нужно умножить его длину на саму себя.

площадь квадратаSEKFM = EK · EK

Формулу площади квадрата, зная определение степени, можно записать следующим образом:

Площадь прямоугольника

Запомните! !

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

площадь прямоугольникаSABCD = AB · BC

Запомните! !

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните! !

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигурыSABCE = AB · BC
SEFKL = 10 · 3 = 30 м 2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м 2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м 2

Ответ: S = 65 м 2 — площадь огородного участка.

Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните! !

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника ABCD . Найдём площадь треугольников alt=»знак треугольника» />ABC и alt=»знак треугольника» />ACD

Вначале найдём площадь прямоугольника по формуле.

S знак треугольникаABC = SABCD : 2

S знак треугольникаABC = 20 : 2 = 10 см 2

S alt=»знак треугольника» />ABC = S alt=»знак треугольника» />ACD = 10 см 2

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *