Что называется шириной интерференционной полосы
Перейти к содержимому

Что называется шириной интерференционной полосы

  • автор:

 

Ширина полос интерференции

В ведем еще два параметра интерференционной картины. Ширина интерференционной полосы – это расстояние между двумя соседними минимумами, а расстояние между двумя интерференционными полосами – это расстояние между двумя соседними максимумами интенсивности. Ясно, что эти оба параметра имеют одинаковое значение. Из геометрических соображений получим это.

Рассмотрим две световые волны, исходящие из точечных источников S1 и S2. n – показатель преломления среды. Экран параллелен прямой соединяющей источники. Область, в которой эти волны перекрываются, называется полем интерференции. Во всей этой области наблюдается чередование мест с максимумом и минимумом интенсивности света. Вычислим ширину полос интерференции x (тёмных и светлых полос). Положение точки на экране будет характеризоваться точкой x, отстоящей от центрального максимума (расположен на перпендикуляре, опущенном из середины расстояния между источниками). Установим, что источники колеблются в одинаковой фазе.

Из рисунка видно.

Т.к. d << l и x << l, то можно считать.

Тогда из (2) и (3) получаем.

– это геометрическая разность хода. (5)

Умножим левую и правую части (5) на показатель преломления среды n.

– это оптическая разность хода.

Подставим это значение в условие максимума интенсивности.

m = 0, 1, 2 …

Для условия минимума имеем.

Из формул (7) и (8) видно, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное:

, где – расстояние от источников до экрана.

Из перечисленных формул видно, что при d l, x , т.е. ширина полосы была бы сравнима с длиной волны, т.е. x < 1 мкм. Ничего нельзя было бы увидеть. Поэтому необходимо выполнение условия d << l .

Из приведённых формул видно, что ширина интерференционной полосы и расстояние между полосами зависит от длины волны . Только в центре интерференционной картины при x = 0 совпадают максимумы всех длин волн. По мере удаления от центра максимумы разных цветов смещаются друг относительно друга всё больше и больше. Это приводит к тому, что при наблюдении в белом свете, происходит размытие интерференционных полос. Интерференционная картина будет окрашенной, но не чёткой, смазанной.

Измерив x, зная l и d можно вычислить длину волны света . Именно так впервые вычислили длины волн разных цветов.

Когерентность

Необходимым условием интерференции волн является их когерентность. Условию когерентности удовлетворяют монохроматические волны. Однако монохроматическая волна, описываемая выражением

представляет собой абстракцию. Следовательно, рассмотренный нами процесс интерференции является идеализированным. Волны, излучаемые любыми независимыми источниками света, не могут быть монохроматическими и когерентными. Причина немонохроматичности, следовательно, некогерентности световых волн лежит в самой природе происхождения этих волн. Излучение светящегося тела слагается из волн, испускаемых атомами. Излучение каждого атома длится очень короткое время (порядка 10 -8 с). За это время возбужденный атом переходит в нормальное состояние и перестает излучать. Возбудившись вновь, атом начинает испускать световые волны уже с новой начальной фазой. Разность фаз между излучением двух независимых атомов не остается постоянной, поскольку процесс излучения является случайным. Таким образом, волны испускаемые атомами, лишь короткий промежуток времени (порядка 10 -8 с) имеют приблизительно постоянные амплитуду и фазы колебаний.

Проведенные рассуждения наталкивают на вывод о принципиальной невозможности получения интерференционной картины от естественного источника световой волны. Однако интерференционные картины все-таки наблюдаются. Для их существования необходимо выполнение ряда условий. Рассмотрим их.

Введем несколько понятий и определений. Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом. Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга называется временем когерентности . Когерентность существует только в пределах одного цуга и время когерентности не может превышать продолжительности излучения одного цуга, т.е. . Обнаружить четкую интерференционную картину можно только тогда, когда время разрешения прибора меньше времени когерентности накладываемых световых волн.

За время когерентности волна распространяется в вакууме на расстояние , равное . Расстояние называется длиной когерентности (длиной цуга). Таким образом, длина когерентности есть расстояние, при прохождении которого одна или несколько световых волн утрачивают когерентность. Следовательно, для получения интерференционной картины разность хода световых волн должна быть меньше длины когерентности для используемого источника света: .

Длина когерентности световой волны непосредственно связана со степенью монохроматичности света, равной отношению , где – конечный интервал длин волн, интерференция которых наблюдается. Эта связь выражается соотношением:

Таким образом, для получения интерференционной картины от реального источника излучения необходимо иметь излучение с малым значением . Это условие представляет собой способ увеличения длины когерентности. Для солнечного света . Лазеры позволили получить порядка сотен метров.

Рассмотрим для пояснения длины когерентности опыт Юнга.

В опыте Юнга интерференционная картина по мере удаления от её середины размывается. Несколько полос видны, но далее постепенно они исчезают. Почему?

Ответ ясен: потому, что степень когерентности складываемых в этих точках экрана колебаний (волн) постепенно уменьшается, и, наконец, колебания становятся полностью некогерентными.

Исходя из этого факта, попытаемся объяснить наблюдаемое с помощью следующей модели. Пусть мы видим, например, первые четыре порядка интерференции (m = 4), а затем полосы исчезают. Этот переход наблюдается довольно плавным, но мы не будем останавливаться на деталях. Исчезновение полос с m > 4 означает, что колебания, пришедшие в соответствующие точки экрана от обеих волн, оказываются уже некогерентными между собой. Т.е. пока их разность хода не превышает m = 4 длин волн, колебания в какой-то степени когерентны. Значит, вдоль распространения волны когерентными между собой будут только участки волны в этом интервале длины. Данный интервал и называется длиной когерентности . В рассмотренном случае . Заметим, что в данных условиях это простейший способ оценки длины когерентности: , где m – м аксимальный порядок интерференции, соответствующей ещё видимой полосе.

Всё это можно схематически представить с помощью рисунка.

В опыте Юнга, в падающие на обе щели волне длина когерентности равна . Щели создают две волны с той же длиной когерентности, но поскольку они достигают разных точек экрана с различными разностями хода, то участки когерентности обеих волн постепенно сдвигаются относительно друг друга. Начиная с m = 5, они перестают перекрывать друг друга, т.е. складываемые колебания становятся некогерентными и интерференционные полосы исчезают.

Всё сказанное, как мы увидим далее, справедливо при условии, что «первичная» щель S достаточно узкая. При расширении этой щели вступает в действие другой эффект. Рассмотрим его.

Вероятность возбуждения интерференционных колебаний, кроме временных параметров волн характеризуется также пространственной когерентностью. Эта характеристика связана с геометрическими размерами конкретной системы разделения световой волны и описывается так называемой шириной когерентности . Под шириной когерентности понимается расстояние между точками перпендикулярной к направлению распространения волны поверхности, в пределах которого волны когерентны.

Как уже говорилось, цель в опыте Юнга предполагалась весьма узкой. Часто говорят о бесконечно узкой щели. Расширение же щели, как и уменьшение степени монохроматичности света приводит к ухудшению (размытию) интерференционных полос и даже к полному их исчезновению. Чтобы выяснить роль ширины щели S, рассмотрим теперь на примере опыта Юнга другой крайний случай: излучение монохроматическое, но щель не узкая.

И нтерференционную картину на экране Э можно представить как наложение интерференционных картин от бесконечно узких щелей, на которые мысленно разобьем щель S. Пусть положение максимумов на экране Э от узкой щели, взятой около верхнего края щели S – точки 1 – таково, как отмечено сплошными отрезками на рисунке. А максимумы от узкой щели, взятой около нижнего края щели S – точки 2 – будут смещены вверх, они отмечены пунктирными отрезками на этом же рисунке. Интервалы между этими максимумами заполнены максимумами от промежуточных узких щелей, расположенных между краями 1 и 2.

При расширении щели S расстояния между максимумами от её крайних элементов будут увеличиваться, т.е. интервалы между соседними максимумами от одного края щели будут постепенно заполняться максимумами от остальных элементов щели.

Для простоты будем считать, что в приведённом рисунке расстояния a = c. Тогда при ширине щели b, равной ширине интерференционной полосы x, интервал между соседними максимумами от края 1 будет полностью заполнен максимумами от остальных элементов щели, и интерференционные полосы исчезнут.

Итак, при расширении щели S интерференционная картина постепенно размывается и при некоторой ширине щели практически исчезает.

Это наблюдаемое явление можно объяснить иначе, а именно, интерференционная картина исчезает вследствие того, что вторичные источники – щели S1 и S2 становятся некогерентными. Сказанное позволяет говорить о ширине когерентности падающей на щели S1 и S2 световой волны – ширине , на которой отдельные участки волны в достаточной степени когерентны между собой. Во избежание недоразумений уточним: под шириной имеется в виду характерное для данной установки расстояние между точками поверхности, перпендикулярной направлению распространения волны.

Ширина когерентности связана с длиной волны соотношением

где – угловая ширина источника относительно интересующего нас места (например, места разделения световой волны, экрана со щелями S1 и S2).

Это значит, что ширина когерентности пропорциональна длине волны и обратно пропорциональна угловой ширине источника.

Понятно, что для обеспечения пространственной когерентности освещения щелей S1 и S2 ширина b входной щели S должна быть достаточно малой.

a – расстояние между экранами со щелями; = b/a – угловой размер источника света – щели S.

Интерференционная картина в монохроматическом свете с длиной волны получается отчётливой, если выполняется следующее приближённое условие.

b – ширина щели S, а 2 — апертура интерференции.

Если в качестве источника использовать непосредственно Солнце (его угловой размер 0,01 рад и ср 0,5 мкм), то ширина когерентности hког 0,05 мм. Поэтому для получения интерференционной картины от двух щелей с помощью такого излучения расстояние между двумя щелями должно быть меньше 0,05 мм, что сделать практически невозможно.

Общие выводы. Для получения устойчивой интерференционной картины с использованием обычных источников света необходимо исходную световую волну разделить на две части, которые дадут интерференционную картину при соблюдении двух условий:

1. Разность хода световых волн должна быть меньше длины когерентности: . Поскольку длина когерентности непосредственно зависит от монохроматичности волн и времени когерентности, это условие называется временной когерентностью волн.

2. Ширина когерентности должна превышать расстояние между некоторыми характерными световыми лучами в месте расщепления исходной волны (на рисунках это расстояние между источниками излучения и ).

Что называется шириной интерференционной полосы

В монохроматической световой волне электрическое поле и магнитное поле изменяются с постоянной частотой (циклическая частота), каждая проекция векторов и пропорциональна величине . Здесь — время, — фаза колебаний, — начальная фаза, зависящая от пространственных координат. Разные проекции векторов и могут иметь различающиеся начальные фазы.

В бегущей монохроматической световой волне векторы и в каждый момент времени перпендикулярны друг другу и равны по величине (в системе единиц СГС Гаусса). Направление движения световой волны перпендикулярно обоим векторам и , то есть световая волна — поперечная волна. Если векторы и в какой-то точке пространства в какой-то момент времени не перпендикулярны друг другу или не равны по длине, то через эту точку проходит не одна волна, а несколько волн в различных направлениях.

Далее будем обсуждать только направление распространения световой волны (вектор Пойнтинга) и направление вектора , так как направление вектора однозначно ими определяется.

Пусть световая волна распространяется в направлении оси Z. Тогда вектор лежит в плоскости XY, так как перпендикулярен направлению распространения. Если вектор колеблется вдоль какой-то линии в этой плоскости, то световая волна называется линейно поляризованной. Если вектор произвольно меняется в плоскости XY, то в каждый момент времени его можно разложить на сумму двух векторов вдоль осей X и Y. Произвольную волну, распространяющуюся вдоль оси Z, можно представить, как сумму двух линейно поляризованных волн с колебанием вектора вдоль осей X и Y соответственно.

Если конец вектора вращается по окружности в плоскости XY, то такой свет называется циркулярно поляризованным или светом с круговой поляризацией. Свет поляризован по левому кругу, если в фиксированной точке при наблюдении навстречу свету вектор (как и вектор ) вращается по левому кругу, то есть против часовой стрелки. Если конец вектора описывает эллипс, то волна называется эллиптически поляризованной. Если волна монохроматическая, то конец вектора описывает эллипс, окружность, либо вектор гармонически колеблется вдоль линии.

Интенсивностью световой волны называют среднее значение модуля вектора Пойнтинга. Время усреднения либо считают равным времени регистрации света, либо равным постоянной времени приемника света. Поскольку для бегущей волны векторы и перпендикулярны, модуль вектора Пойнтинга можно найти по формуле . Если еще учесть, что , то получим выражение . Следовательно для интенсивности можно записать , где скобки означают среднее по времени значение. Эта формула приближенно верна и при сложении почти однонаправленных световых волн.

При сложении двух или нескольких световых волн складываются не интенсивности волн, а напряженности и световых полей. При этом если интенсивность суммы полей отличается от суммы интенсивностей, то говорят, что эти световые поля интерферируют. Если световые поля способны интерферировать, то их называют когерентными друг другу.

Если на пути распространения световой волны встречается препятствие, то волна его огибает, поворачивает "за угол". Это явление называется дифракцией. Препятствием, например, может быть любой объект, который не пропускает, "загораживает", часть фронта световой волны.

V. ИНТЕРФЕРЕНЦИЯ.

Явление интерференции состоит в том, что при сложении двух или нескольких световых волн, суммарная интенсивность света отличается от суммы интенсивностей. Это возможно потому, что складываются напряженности и световых волн, а интенсивность суммы световых волн можно найти, в соответствии с определением интенсивности, по формуле (в системе единиц СГС Гаусса).

Интерференцию света обычно рассматривают не в одной точке, а на плоском экране. Поэтому говорят об интерференционной картине, под которой понимают чередующиеся полосы относительно большей и меньшей интенсивности света. Основными характеристиками интерференционной картины являются ширина полос интерференции и видность интерференционной картины.

Ширина интерференционных полос — это расстояние на экране между двумя соседними светлыми или двумя темными полосами.

Здесь — интенсивность света в середине светлой полосы, — в середине ближайшей темной полосы. Более строго можно ввести понятие видности, используя понятие модуля комплексной степени когерентности [2, 3].

Видность интерференционной картины меняется в пределах от 0 до 1. Нулевая видность соответствует условию , при котором полосы просто отсутствуют (равномерно освещенная область экрана). Видность равная единице соответствует условию .

Волны с ортогональными линейными поляризациями не интерферируют, так как для них интенсивность суммарной волны всегда равна сумме интенсивностей исходных волн. В том же смысле ортогональны лево и право циркулярно поляризованные волны.

Наиболее часто обсуждаемые в задачах по оптике поляризационные устройства — поляризатор и фазовые пластинки и .

Поляризатор.

Идеальный поляризатор — это оптическое устройство, которое полностью пропускает одну линейную поляризацию и полностью поглощает ортогональную к ней поляризацию. Свет, распространяющийся в фиксированном направлении всегда можно мысленно представить как сумму двух линейно поляризованных во взаимно перпендикулярных направлениях волн, каждая из которых распространяется в том же направлении. Поляризатор оставляет одну из этих волн.

Пластинки и .

Плоскопараллельную фазовую пластинку или изготавливают из одноосного кристалла, так что направление оси кристалла лежит в плоскости пластинки. Свет, падающий перпендикулярно на фазовую пластинку, распространяется в ней в виде двух независимых световых волн линейно поляризованных во взаимно перпендикулярных направлениях. Поляризация (направление вектора ) обыкновенной волны перпендикулярна оси кристалла. Поляризация необыкновенной волны совпадает с направлением оси кристалла.

Для каждой из двух волн кристалл имеет свой показатель преломления и . От показателя преломления зависит оптическая толщина пластинки , где — геометрическая толщина. Поэтому две волны на выходе из кристалла приобретают оптическую разность хода . Если разность хода равна , то фазовая пластинка называется пластинкой . Если , то — . Подробнее понятие оптической разности хода обсуждается в одном из следующих разделов.

Эта разность хода изменяет разность фаз двух линейно поляризованных волн на величину .

Пластинка интересна тем, что она позволяет получить циркулярно поляризованный свет из линейно поляризованного и наоборот. Чтобы получить циркулярно поляризованный свет из линейно поляризованного, направление линейной поляризации на входе пластинки должно составлять угол с направлением оси кристалла (свет падает перпендикулярно пластинке). Только в этом случае амплитуды обыкновенной и необыкновенной волн в кристалле равны.

На входе в кристалл эти две волны синфазные в случае линейной поляризации падающей волны. Тогда разности хода на выходе пластинки соответствует разность фаз . За пластинкой при сложении двух линейно поляризованных волн с одинаковой амплитудой, взаимно ортогональной поляризацией и разностью фаз образуется циркулярно поляризованная волна.

Двухлучевая интерференция.

Под двухлучевой интерференцией понимают интерференционную картину, возникающую при сложении двух световых волн одинаковой частоты.

Рассмотрим простейшую задачу по интерференции. Пусть две линейно поляризованные в одном направлении световые волны приходят в одну точку экрана и имеют в этой точке зависимость напряженности электрического поля от времени в виде: и . Выразим интенсивность суммарной световой волны через одинаковую интенсивность падающих световых волн, которую обозначим , .

В этой задаче сумма интенсивностей падающих волн равна . Интенсивность суммарной волны бывает как больше, так и меньше суммы интенсивностей в зависимости от разности фаз интерферирующих волн. Светлая полоса (большая интенсивность) соответствует нулевой разности фаз, темная — разности фаз равной .

При сложении двух волн одинаковой поляризации с интенсивностями и интенсивность суммарной волны получаем аналогично:

Оптическая разность хода.

Вместо разности фаз интерферирующих волн удобно ввести в рассмотрение пропорциональную ей величину — оптическую разность хода, которая отличается множителем , где — длина световой волны.

Изменению разности фаз на соответствует изменение разности хода на .

В вакууме оптическая разность хода в отличие от разности фаз имеет наглядную интерпретацию. Если две интерферирующие волны испускаются одним источником света, то разность хода — это геометрическая разность длин путей, по которым два интерферирующих луча от одной точки источника достигли одной точки экрана.

Например, в оптической схеме опыта Юнга, изображенной на рис. 18, разность хода для точки P на экране находится по формуле:

В изотропной среде скорость света в раз меньше, чем в вакууме, здесь — показатель преломления среды. Частота света в среде и в вакууме одинакова, поэтому длина волны в среде в раз меньше. В соответствии с соотношением вместо реального уменьшения длины волны можно рассматривать неизменную и соответствующее увеличение длины пути луча. С этой целью вводится понятие оптической длины пути, которая в раз больше геометрической длины. Далее, употребляя термин "разность хода", всегда будем иметь в виду оптическую разность хода.

Заменяя разность фаз интерферирующих волн оптической разностью хода, получаем следующее выражение для интенсивности интерференционной картины:

Приемники света в оптическом диапазоне реагируют на интенсивность света, а не на напряженность электрического или магнитного полей. Поэтому измеряемые в опыте величины, ширина полос и видность, также могут быть выражены через интенсивность, а значит и через оптическую разность хода. Следовательно, понятие оптической разности хода позволяет свести оптическую задачу по интерференции к геометрической задаче отыскания разности хода.

Отметим, что разность хода лучей можно отсчитывать не только как разность длин путей от источника до точки наблюдения, но и как разность длин путей от двух точек любой поверхности равной фазы волны до точки наблюдения. При этом, конечно, две точки на поверхности равной фазы — не произвольные точки, а должны быть точками, через которые реально проходят лучи, попадающие в точку наблюдения. Так на рис. 18 , поэтому две щели находятся на поверхности равной фазы, и, следовательно, разность хода можно найти по упрощенной формуле . Этот прием часто используется при решении задач.

Ширина интерференционных полос.

Обычно экран для наблюдения интерференционной картины располагают так, чтобы оба луча и нормаль к экрану находились в одной плоскости. В этом случае ширина интерференционных полос полностью определяется углами падения световых волн на экран и длиной световой волны и не зависит от оптической схемы формирования интерферирующих волн.

 

Пусть две плоские световые волны падают на экран под углами и (рис. 19), точки и — середины двух соседних светлых полос на экране, — поверхность равной фазы первой волны, — поверхность равной фазы второй волны. Поверхность имеет ту же фазу, что и поверхность , так как в точке фазы двух волн одинаковые (светлая полоса). Поэтому можно считать, что это одна и та же поверхность равной фазы волны, идущей от одного точечного источника разными путями. Следовательно, оптическую разность хода, например для точки экрана , можно отсчитывать от пары точек и как бы общей поверхности равной фазы.

Из рис. 19 видно, что поверхность равной фазы первой волны еще не дошла до точки на отрезок , а поверхность второй волны уже зашла за точку на отрезок . Тогда оптическая разность хода для точки равна

Точки и — середины соседних светлых полос, тогда оптическая разность хода равна длине волны , так как при переходе по экрану на одну полосу разность хода меняется на . Выражая из этого равенства ширину полосы , и обозначая ее через , получаем

где знак ‘+’ соответствует положительным углам падения и отсчитанным в разные стороны от нормали к экрану, как на рис. 19.

В большинстве задач углы падения малы, тогда и выражение для ширины полос упрощается

где — угол между лучами сходящимися на экране.

Эта формула сводит оптическую задачу к геометрической. Для определения ширины интерференционных полос нужно построить два луча, выходящие из одной точки источника света и попадающие в одну точку экрана. Ширина полос — это отношение длины волны света к углу между лучами, сходящимися в одну точку.

Если ширины соседних полос заметно различаются, то термина "ширина полос" избегают. Такая ситуация возникает при интерференции плоской и сферической волн, например при наблюдении колец Ньютона. Кольца Ньютона наблюдаются при интерференции волны, отраженной от сферической поверхности выпуклой линзы, и волны, отраженной от плоской поверхности, соприкасающейся со сферической поверхностью линзы. В этой задаче вместо ширины полос ищут радиус светлого (или темного) кольца с произвольным номером .

Потеря полуволны.

В соответствии с формулами Френеля [2, 3] на границе раздела двух сред преломленная световая волна всегда в фазе с падающей волной, отраженная волна — либо в фазе, либо в противофазе. Иной сдвиг фазы отраженной волны возникает только в случае полного внутреннего отражения.

При нормальном падении света на границу раздела двух сред отраженная волна в точке падения будет в противофазе с падающей при отражении от оптически более плотной среды, от среды с более высоким показателем преломления. Противоположная фаза отраженной волны эквивалентна сдвигу фазы на , или изменению разности хода на . Поэтому говорят, что при отражении от оптически более плотной среды происходит потеря полуволны. При этом в выражении для оптической длины пути следует добавить (или вычесть) слагаемое .

Если одна из интерферирующих волн по пути к экрану испытала отражение с потерей полуволны, как, например, при наблюдении колец Ньютона в отраженном свете, то без учета потери полуволны в рассчитанной интерференционной картине темные полосы окажутся на месте светлых, а светлые — на месте темных.

Интерференция и закон сохранения энергии.

Совместим с помощью полупрозрачной пластинки две плоские световые волны одинаковой амплитуды, как показано на рис. 20. Тогда по формуле

можно найти интенсивность суммарной волны. Если косинус в этом выражении равен (-1), то . Куда же в таком случае делась энергия суммируемых волн? А если косинус равен (+1), то , что вдвое больше суммы интенсивностей суммируемых волн. Нет ли здесь противоречия с законом сохранения энергии?

В действительности противоречия нет, так как кроме сложения световых волн в направлении (рис. 21) происходит сложение волн в направлении . И при изменении величины косинуса в приведенной выше формуле происходит перераспределение энергии между световыми волнами, идущими в этих направлениях.

Для обоих направлений косинус будет принимать одно и тоже значение, и, если больше света идет в направлении , то, казалось бы, больше и в направлении . Противоречие с законом сохранения энергии остается?

Положение спасает потеря полуволны. Для плоскопараллельной полупрозрачной пластинки это не так очевидно, из-за многократных отражений. Задача становится более простой в случае, изображенном на рис. 22. Здесь полупространство вправо и вниз заполнено средой с показателем преломления , а совмещение световых волн происходит при отражении и преломлении света на границе среда — вакуум. Если в направлении отражение происходит с потерей полуволны, то в направлении — без потери полуволны. Следовательно, увеличение света в направлении сопровождается уменьшением интенсивности света в направлении . Таким образом, учет потери полуволны устраняет противоречие. Данный способ совмещения световых волн (в направлении или в направлении ) называется способом деления амплитуды.

Можно совмещать световые волны другим способом, как это изображено на рис. 23. Этот метод наблюдения интерференции называют методом деления волнового фронта.

В методе деления волнового фронта интерферирующие волны неизбежно складываются под некоторым углом , что приводит к появлению интерференционных полос. Энергия световой волны при этом не возникает и не пропадает, она перераспределяется между светлыми и темными интерференционными полосами.

Интересен случай, когда интерферирующие волны сходятся под малым углом , так что ширина полос оказывается много больше ширины интерферирующих пучков. Тогда, казалось бы, весь экран, на который попадает весь свет, можно одновременно сделать темной интерференционной полосой или одновременно светлой полосой. В случае темной полосы, например, энергия присутствует в каждой световой волне до совмещения волн, но не доходит до экрана и не приходит вообще никуда.

Чтобы разобраться с этим вариантом парадокса необходимо учесть дифракцию волн. Попробуйте вернуться к его рассмотрению самостоятельно после изучения темы "Дифракция".

Большая Энциклопедия Нефти и Газа

Ширину интерференционных полос изменяют путем децентри-рования объектива 10, а их поворот в поле зрения — поворотом того же объектива вокруг его оси. При наличии неровностей на испытуемой поверхности интерференционные полосы, как было сказано выше, соответственно искривляются.  [6]

Ширину интерференционных полос изменяют посредством децентрирования объектива 10, а их поворот в поле зрения — поворотом того же объектива вокруг его оси. При наличии неровностей на испытуемой поверхности интерференционные полосы соответственно искривляются. На рис. 3.32 6 в поле зрения окуляра видна канавка на одноштрнховой мере. Например, глубина ее Н определяется при половине длины волны Я / 2 0 275 мкм ( белый свет) следующим образом: / У Л / В — л / 2 0 75 — 0 275 0 2 мкм. Более точные измерения производят с фильтром, пропускающим свет определенной длины волны. Прибор позволяет измерять неровности высотой от 0 03 до 1 мкм, имеющие определенную ориентацию. При визуальном наблюдении увеличение составляет 490х и поле зрения 0 32 мм, а при фотографировании — 260 и 0 10 мм.  [7]

Ширину интерференционной полосы определим как расстояние между двумя соседними максимумами.  [8]

Шириной интерференционной полосы А называется расстояние между серединами соседних главных максимумов или минимумов.  [9]

Шириной интерференционной полосы b называется линейное расстояние между двумя соседними интерференционными максимумами. Ширина полосы может быть дана и в угловых величинах.  [11]

Как зависит ширина интерференционных полос в опыте Юнга от расстояния между щелями и от расстояния до экрана.  [12]

Направление и ширину интерференционных полос можно регулировать наклоном зеркала 8, поворот которого осуществляется регулировочными винтами.  [13]

При увеличении р ширина интерференционной полосы уменьшается, хотя расстояние между максимумами не изменяется.  [14]

Интерференция волн.

В предыдущем листке, посвящённом принципу Гюйгенса, мы говорили о том, что общая картина волнового процесса создаётся наложением вторичных волн. Но что это значит — «наложением»? В чём состоит конкретный физический смысл наложения волн? Что вообще происходит, когда в пространстве одновременно распространяются несколько волн? Этим вопросам и посвящён данный листок.

Сложение колебаний.

Сейчас мы будем рассматривать взаимодействие двух волн. Природа волновых процессов роли не играет — это могут быть механические волны в упругой среде или электромагнитные волны (в частности, свет) в прозрачной среде или в вакууме.

Опыт показывает, что волны складываются друг с другом в следующем смысле.

Принцип суперпозиции. Если две волны накладываются друг на друга в определённой области пространства, то они порождают новый волновой процесс. При этом значение колеблющейся величины в любой точке данной области равно сумме соответствующих колеблющихся величин в каждой из волн по отдельности.

Например, при наложении двух механических волн перемещение частицы упругой среды равно сумме перемещений, создаваемых в отдельности каждой волной. При наложении двух электромагнитных волн напряжённость электрического поля в данной точке равна сумме напряжённостей в каждой волне (и то же самое для индукции магнитного поля).

Разумеется, принцип суперпозиции справедлив не только для двух, но и вообще для любого количества накладывающихся волн. Результирующее колебание в данной точке всегда равно сумме колебаний, создаваемых каждой волной по отдельности.

Мы ограничимся рассмотрением наложения двух волн одинаковой амплитуды и частоты. Этот случай наиболее часто встречается в физике и, в частности, в оптике.

Оказывается, на амплитуду результирующего колебания сильно влияет разность фаз складывающихся колебаний. В зависимости от разности фаз в данной точке пространства две волны могут как усиливать друг друга, так и полностью гасить!

Предположим, например, что в некоторой точке фазы колебаний в накладывающихся волнах совпадают (рис. 1 ).

Рис. 1. Волны в фазе: усиление колебаний

Мы видим, что максимумы красной волны приходятся в точности на максимумы синей волны, минимумы красной волны — на минимумы синей (левая часть рис. 1 ). Складываясь в фазе, красная и синяя волны усиливают друг друга, порождая колебания удвоенной амплитуды (справа на рис. 1 ).

Теперь сдвинем синюю синусоиду относительно красной на половину длины волны. Тогда максимумы синей волны будут совпадать с минимумами красной и наоборот — минимумы синей волны совпадут с максимумами красной (рис. 2 , слева).

Рис. 2. Волны в противофазе: гашение колебаний

Колебания, создаваемые этими волнами, будут происходить, как говорят, в противофазе — разность фаз колебаний станет равна . Результирующее колебание окажется равным нулю, т. е. красная и синяя волны попросту уничтожат друг друга (рис. 2 , справа).

Когерентные источники.

Пусть имеются два точечных источника, создающие волны в окружающем пространстве. Мы полагаем, что эти источники согласованы друг с другом в следующем смысле.

Когерентность. Два источника называются когерентными, если они имеют одинаковую частоту и постоянную, не зависящую от времени разность фаз. Волны, возбуждаемые такими источниками, также называются когерентными.

Итак, рассматриваем два когерентных источника и . Для простоты считаем, что источники излучают волны одинаковой амплитуды, а разность фаз между источниками равна нулю. В общем, эти источники являются «точными копиями» друг друга (в оптике, например, источник служит изображением источника в какой-либо оптической системе).

Наложение волн, излучённых данными источниками, наблюдается в некоторой точке . Вообще говоря, амплитуды этих волн в точке не будут равны друг другу — ведь, как мы помним, амплитуда сферической волны обратно пропорциональна расстоянию до источника, и при разных расстояниях и амплитуды пришедших волн окажутся различными. Но во многих случаях точка расположена достаточно далеко от источников — на расстоянии гораздо большем, чем расстояние между самими источниками. В такой ситуации различие в расстояниях и не приводит к существенному отличию в амплитудах приходящих волн. Следовательно, мы можем считать, что амплитуды волн в точке также совпадают.

Условие максимума и минимума.

Однако величина , называемая разностью хода, имеет важнейшее значение. От неё самым решительным образом зависит то, какой результат сложения приходящих волн мы увидим в точке .

Рис. 3. Усиление колебаний в точке P

В ситуации на рис. 3 разность хода равна длине волны . Действительно, на отрезке укладываются три полных волны, а на отрезке — четыре (это, конечно, лишь иллюстрация; в оптике, например, длина таких отрезков составляет порядка миллиона длин волн). Легко видеть, что волны в точке складываются в фазе и создают колебания удвоенной амплитуды — наблюдается, как говорят, интерференционный максимум.

Ясно, что аналогичная ситуация возникнет при разности хода, равной не только длине волны, но и любому целому числу длин волн.

Условие максимума. При наложении когерентных волн колебания в данной точке будут иметь максимальную амплитуду, если разность хода равна целому числу длин волн:

Теперь посмотрим на рис. 4 . На отрезке укладываются две с половиной волны, а на отрезке -три волны. Разность хода составляет половину длины волны ( d=\lambda /2[/math] ).

Рис. 4. Гашение колебаний в точке P

Теперь нетрудно видеть, что волны в точке складываются в противофазе и гасят друг друга — наблюдается интерференционный минимум. То же самое будет, если разность хода окажется равна половине длины волны плюс любое целое число длин волн.

Условие минимума.
Когерентные волны, складываясь, гасят друг друга, если разность хода равна полуцелому числу длин волн:

Равенство (2) можно переписать следующим образом:

Поэтому условие минимума формулируют ещё так: разность хода должна быть равна нечётному числу длин полуволн.

Интерференционная картина.

А что, если разность хода принимает какое-то иное значение, не равное целому или полуцелому числу длин волн? Тогда волны, приходящие в данную точку, создают в ней колебания с некоторой промежуточной амплитудой, расположенной между нулём и удвоенным значением 2A амплитуды одной волны. Эта промежуточная амплитуда может принимать все значения от 0 до 2A по мере того, как разность хода меняется от полуцелого до целого числа длин волн.

Таким образом, в той области пространства, где происходит наложение волн когерентных источников и , наблюдается устойчивая интерференционная картина — фиксированное не зависящее от времени распределение амплитуд колебаний. А именно, в каждой точке данной области амплитуда колебаний принимает своё значение, определяемое разностью хода приходящих сюда волн, и это значение амплитуды не меняется со временем.

Такая стационарность интерференционной картины обеспечивается когерентностью источников. Если, например, разность фаз источников будет постоянно меняться, то никакой устойчивой интерференционной картины уже не возникнет.

Теперь, наконец, мы можем сказать, что такое интерференция.

Интерференция — это взаимодействие волн, в результате которого возникает устойчивая интерференционная картина, то есть не зависящее от времени распределение амплитуд результирующих колебаний в точках области, где волны накладываются друг на друга.

Если волны, перекрываясь, образуют устойчивую интерференционную картину, то говорят попросту, что волны интерферируют. Как мы выяснили выше, интерферировать могут только когерентные волны. Когда, например, разговаривают два человека, то мы не замечаем вокруг них чередований максимумов и минимумов громкости; интерференции нет, поскольку в данном случае источники некогерентны.

На первый взгляд может показаться, явление интерференции противоречит закону сохранения энергии — например, куда девается энергия, когда волны полностью гасят друг друга? Но никакого нарушения закона сохранения энергии, конечно же, нет: энергия просто перераспределяется между различными участками интерференционной картины. Наибольшее количество энергии концентрируется в интерференционных максимумах, а в точки интерференционных минимумов энергия не поступает совсем.

На рис. 5 показана интерференционная картина, созданная наложением волн двух точечных источников и . Картина построена в предположении, что область наблюдения интерференции находится достаточно далеко от источников. Пунктиром отмечена ось симметрии интерференционной картины.

Рис. 5. Интерференция волн двух точечных источников

Цвета точек интерференционной картины на этом рисунке меняются от чёрного до белого через промежуточные оттенки серого. Чёрный цвет — интерференционные минимумы, белый цвет — интерференционные максимумы; серый цвет — промежуточное значение амплитуды, и чем больше амплитуда в данной точке, тем светлее сама точка.

Обратите внимание на прямую белую полосу, которая идёт вдоль оси симметрии картины. Здесь расположены так называемые центральные максимумы. Действительно, любая точка данной оси равноудалена от источников (разность хода равна нулю), так что в этой точке будет наблюдаться является интерференционный максимум.

Остальные белые полосы и все чёрные полосы слегка искривлены; можно показать, что они являются ветвями гипербол. Однако в области, расположенной на большом расстоянии от источников, кривизна белых и чёрных полос мало заметна, и выглядят эти полосы почти прямыми.

Интерференционный опыт, изображённый на рис. 5 , вместе с соответствующим методом расчёта интерференционной картины называется схемой Юнга. Эта схема лежит в основе знаменитного
опыта Юнга (речь о котором пойдёт в теме Дифракция света). Многие эксперименты по интерференции света так или иначе сводятся к схеме Юнга.

В оптике интерференционную картину обычно наблюдают на экране. Давайте ещё раз посмотрим на рис. 5 и представим себе экран, поставленный перпендикулярно пунктирной оси.
На этом экране мы увидим чередование светлых и тёмных интерференционных полос.

На рис. 6 синусоида показывает распределение освещённости вдоль экрана. В точке O, расположенной на оси симметрии, находится центральный максимум. Первый максимум в верхней части экрана, соседний с центральным, находится в точке A. Выше идут второй, третий (и такдалее) максимумы.

Рис. 6. Интерференционная картина на экране

Расстояние , равное расстоянию между любыми двумя соседними максимумами или минимумами, называется шириной интерференционной полосы. Сейчас мы займёмся нахождением этой величины.

Пусть источники находятся на расстоянии друг от друга, а экран расположен на расстоянии от источников (рис. 7 ). Экран заменён осью ; начало отсчёта , как и выше, отвечает центральному максимуму.

Рис. 7. Вычисление координат максимумов

Точки и служат проекциями точек и на ось и расположены симметрично относительно точки . Имеем: .

Точка наблюдения может находиться на оси (на экране) где угодно. Координату точки
мы обозначим . Нас интересует, при каких значениях в точке будет наблюдаться интерференционный максимум.

Волна, излучённая источником , проходит расстояние:

Теперь вспомним, что расстояние между источниками много меньше расстояния от источников до экрана: . Кроме того, в подобных интерференционных опытах координата точки наблюдения также гораздо меньше . Это означает, что второе слагаемое под корнем в выражении (3) много меньше единицы:

Раз так, можно использовать приближённую формулу:

Применяя её к выражению (4) , получим:

Точно так же вычисляем расстояние, которое проходит волна от источника до точки наблюдения:

Применяя к выражению (6) приближённую формулу (4) , получаем:

Вычитая выражения (7) и (5) , находим разность хода:

Пусть — длина волны, излучаемой источниками. Согласно условию (1) , в точке будет наблюдаться интерференционный максимум, если разность хода равна целому числу длин волн:

Отсюда получаем координаты максимумов в верхней части экрана (в нижней части максимумы идут симметрично):

При получаем, разумеется, (центральный максимум). Первый максимум рядом с центральным соответствует значению и имеет координату .Такой же будет и ширина интерференционной полосы:

Благодарим за то, что пользуйтесь нашими публикациями. Информация на странице «Интерференция волн.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *