Почему при умножении на 0 получается 0
Перейти к содержимому

Почему при умножении на 0 получается 0

  • автор:

Правила умножения числа на ноль

Всем нам в школе учителя прочно вбили в голову простейшее правило: «Любое число, умноженное на ноль, равняется нулю!». И все мы хорошо его запомнили и применяем в жизни, не задаваясь вопросом: «Почему?». Но вот мы выросли, у нас появились дети, и пришло время объяснять им те самые простейшие правила так, чтобы было понятно и запомнилось навсегда. Как это сделать? Какие слова подобрать? Будем разбираться.

Правила умножения любого числа на ноль

Какие действия в математике можно выполнять с нулём

Умножение на ноль, правило математики

Деление на ноль, правило математики

Всем нам в школе учителя прочно вбили в голову простейшее правило: «Любое число, умноженное на ноль, равняется нулю!». И все мы хорошо его запомнили и применяем в жизни, не задаваясь вопросом: «Почему?». Но вот мы выросли, у нас появились дети, и пришло время объяснять им те самые простейшие правила так, чтобы было понятно и запомнилось навсегда. Как это сделать? Какие слова подобрать? Будем разбираться.

Что такое ноль

Вокруг этой цифры всегда велось много споров. Число 0 занимает особое место в математике, даже несмотря на то, что оно буквально означает «ничто», «пустота». Ноль — это целое число, одна из цифр в десятичной системе счисления. Цифра ноль, поставленная справа от другой цифры, увеличивает числовое значение всех цифр, стоящих левее, на разряд — десяток, сотню и так далее. Например, если рядом с 5 ставим 0, получаем 50, если рядом с 50 ставим 0, получаем 500. А ещё ноль — это число, отделяющее положительные цифры от отрицательных на числовой прямой. Сам ноль при этом знака + / — не имеет.

Какие действия в математике можно выполнять с нулём

С нулём выполняются все арифметические действия: сложение, вычитание, умножение, деление, возведение в степень. При выполнении сложения и вычитания с нулём обычно проблем и сложностей не возникает. Здесь всё просто.

Если к любому числу добавить 0, это означает, что к нему не прибавилось ничего. Слагаемое каким было, таким и осталось, сколько раз ноль ни прибавляй.

То же самое будет, если отнять ноль.

Если ноль разделить на любое ненулевое число, то в результате тоже получится ноль.

А вот операция умножения гораздо менее очевидна. Не все понимают, почему при умножении на 0 получается 0. Именно умножение на ноль мы сейчас рассмотрим подробнее, так как в нём содержатся некоторые нюансы. А заодно поговорим немного и о делении на ноль.

Умножение на ноль, правило математики

Чтобы разобраться, чем отличается умножение числа на ноль от умножения других чисел друг на друга, нужно для начала понять определение умножения в целом. Умножение — одно из основных действий в математике. Умножение — это арифметическое действие, когда сложение одинаковых чисел происходит искомое количество раз. В этом действии участвуют два составляющих компонента — множимое и множитель. Результат их умножения называют произведением. То есть для натуральных чисел умножением, по сути, является многократное сложение. Таким образом, чтобы умножить число a на число b, необходимо b раз сложить a.

a ⋅ b = a + a + … + a> b

Так, пример 4 х 3 = 12 можно заменить следующим выражением: 4 + 4 + 4 = 12. То есть число 4 было взято 3 раза.

А можно ли умножать на ноль? Можно, только это бессмысленно и бесполезно. Ведь ноль — это ничто, пустота. А какой смысл умножать на пустоту? Тут, как ни крути, всё равно будет получаться ноль.

Как на примере объяснить это правило детям? Попробуем вот так:

  • если съесть пять раз по два яблока, получится 2 * 5 = 2 + 2 + 2 + 2 + 2 = 10, то есть в итоге будет съедено 10 яблок;
  • если съесть по два яблока трижды, получится 2 * 3 = 2 + 2 + 2 = 6, в итоге будет съедено 6 яблок;
  • если съесть по два яблока ноль раз, то 2 * 0 = 0 * 2 = 0 + 0 = 0, в итоге не съедено ни одного яблока.

Ведь съесть ноль раз — это означает не съесть ни одного. Ноль — это ничего, а когда у вас нет ничего, то на сколько его ни умножай, всё равно будет ноль.

Правда, иногда выдвигаются следующие возражения: предположим, у человека в руке 2 яблока. Если он не съел их, то яблоки не пропадут, они так и останутся у него в руке. Почему же тогда результат равен нулю? Да, яблоки действительно из руки никуда не денутся. Но ведь в примере мы считаем именно съеденные яблоки, то есть те из них, которые были съедены, проще говоря, оказались в желудке человека. А в последнем случае они туда не попали. Поэтому человек съел ноль яблок.

Итак, основное правило гласит: при умножении числа на ноль и при умножении нуля на число в ответе всегда будет получаться ноль.

a ⋅ 0 = 0

0 ⋅ a = 0

Это правило умножения на ноль в математике действительно для любых чисел: положительных, отрицательных, целых, дробей, разрядных, рациональных, иррациональных. В любом случае произведение будет нулевым.

Для лучшего запоминания правила приведём примеры умножения на ноль:

0 ⋅ 3 = 0 + 0 + 0 = 0

0 ⋅ 4 = 0 + 0 + 0 + 0 = 0

Деление на ноль, правило математики

А что же с делением на 0? Мы со школы помним правило: на ноль делить нельзя. Все это заучивают, не требуя лишних доказательств. Нельзя так нельзя. Большинство людей действительно не делит на ноль только исходя из этого правила, не пытаясь найти ответ, по которому станет понятен этот запрет. А почему, собственно, нельзя?

Деление в математике — действие, обратное умножению, также состоящее из двух компонентов — делимого и делителя. Результат деления называют частным. Также иногда результат деления называют отношением. Если умножение для натуральных чисел заменяет многократное сложение, то, соответственно, деление будет заменять многократное вычитание.

Чтобы было понятнее, рассмотрим на примерах.

  • Разделим число 8 на число 2 (8 : 2). Из действия вычитания мы находим, что число 2 содержится в 8 четыре раза. В данном случае 8 — делимое, 2 — делитель, 4 — частное.
  • Теперь разделим 0 на 2 (0 : 2). Чтобы 0 разделить на 2, надо найти число, при умножении которого на 2 получится 0. Это ноль, так как 0 ⋅ 2 = 0. Значит, 0 ⋅ 2 = 0. При делении нуля на любое число, не равное нулю, частное равно нулю.
  • А теперь попробуем разделить 4 на 0 (4 : 0). Данное выражение можно представить и в виде уравнения: 0 ⋅ x = 4. Следовательно, чтобы разделить 4 на ноль, необходимо найти такое число, при умножении на которое получится 4, а это невозможно исходя из того, что мы выяснили ранее.

Следовательно, делить на 0 нельзя, так как такого числа, при умножении которого на ноль получится 4, не существует. И всё-таки лучше всего это правило просто запомнить и никогда не нарушать. Для лучшего запоминания предложите своему ребёнку выучить небольшое стихотворение:

Расскажу тебе, позволь,

Чтобы не делил на 0!

Режь 1, как хочешь, вдоль,

Только не дели на 0!

Таким образом, с нулём возможно совершать любые арифметические действия: прибавлять и вычитать любые числа, умножать на значения, не равные нулю, возводить в степень, не равную нулю. Единственное ограничение — ноль не может быть делителем для любого действительного числа. В арифметике подобные действия считаются невозможными и бессмысленными.

Подведём итоги

Итак, сегодня мы выяснили, что за цифра такая — ноль. Мы узнали историю её возникновения. А также разобрались, чем отличается умножение числа на 0 от умножения других чисел друг на друга, а также почему на ноль нельзя делить. Чтобы закрепить полученные новые знания, важно отработать их на практике. Поэтому для закрепления и лучшего запоминания предложите своему ребёнку решить примеры:

Конечно же, во всех этих примерах ответ будет 0:

Закрепляем тему «Умножение на ноль»

Закрепить эту и многие другие изученные темы по математике можно на образовательной платформе iSmart. С помощью онлайн-тренажёров дети в увлекательной форме наработают вычислительную беглость в решении примеров с умножением на ноль.

Вот так, например, выглядят задания для второго класса:

А так выглядит сам каталог заданий по математике образовательной платформы iSmart:

Образовательная платформа iSmart разработана учителями и специалистами в области детской психологии в соответствии с требованиями ФГОС. Она предлагает программы подготовки по всем изучаемым в школе предметам, пакеты заданий для подготовки к контрольным работам, тестам, ВПР, олимпиадам, а также изучение дополнительных предметов, не вошедших в школьную программу.

Умножение на единицу и на ноль

При умножении единицы на любое число в результате получится данное число.

потому что сумма 1 + 1 + 1 = 3.

При умножении любого числа на единицу результат будет равен этому числу.

если число 5 взять 1 раз, то получится 5.

Из приведённых примеров следует, что для любого числа a верны равенства:

1 · a = a,

a &middot 1 = a.

Произведение двух множителей, один из которых равен единице, всегда будет равно другому множителю.

Свойства нуля при умножении

При умножении нуля на любое число в результате всегда будет нуль.

потому что сумма 0 + 0 + 0 = 0.

При умножении любого числа на нуль всегда получится нуль.

если число 5 не взять ни одного раза, то в результате не получим ничего, то есть нуль.

Из приведённых примеров следует, что для любого числа a верны равенства:

Произведение двух множителей, один из которых равен нулю, всегда будет равно нулю.

ahiin

В бытность мою практикующим, так сказать, преподавателем, любил я задать своим студентам простой вопрос:
А откуда вообще следует, что
Ну то есть, почему умножение любого числа на ноль дает ноль?

Незабываемо прекрасным было выражение одухотворенных лиц представителей будущей интеллектуальной элиты.

stare

Нечто подобное мне удалось повидать лишь годы спустя, в Голландии:

Не, я конечно понимаю, что всем нам это в юности в школе сказали, в том нежном возрасте, когда добрая природа подавляет критическое восприятие действительности, упрощая обучение. Однако же, студенты 4-го курса таки, будущие "прафисианальные" математики.

Вообще, по определению:

Это все. Если к числу прибавить ноль, получим то же самое число. Никакого умножения в определении. Никаких свойств, связанных с умножением в определении не декларируется. Ежели кто подумал, не метнуться ли резко на Википедию, то предлагаю расслабиться: в статье про ноль, как, впрочем и по всей Википедиии, херня и годная информация экстатически слились неразделимо.

Ежели вернуться к исходному вопросу, то правильный ответ таков:"Это следует из соответствующего доказательства".

Вычитая из правой и левой части, имеем:

В этом невинном, на первый взгляд, доказательстве далеко не все просто. В процессе выкладок использован целый ряд неочевидных свойств чисел и операций над ними. Это и существование у каждого числа обратного ему относительно операции сложения, и дистрибутивность операций сложения и умножения.

Как это часто бывает в математике, за простым, даже тривиальным вопросом нередко отверзаются бездны.

Остается добавить, что систематическая аксиоматика арифметики была закончена итальянским математиком Джузеппе Пеано лишь в последние годы 19-го века. Более того, непротиворечивость аксиоматики Пеано была показана Герхардом Генценом лишь 1936 году. Арифметики. В 1936.

Как-нибудь надо будет рассказать, как пифагорейцев, которым тоже было "все и так понятно", обломала диагональ квадрата.

Умножение на ноль — правило в математике и примеры

Почему при умножении на ноль получается ноль

Ноль означает ничто, пустоту. Он используется для обозначения пустых разрядов чисел в позиционной системе счисления, а также в десятичных дробях до и после запятой. Вокруг этой цифры всегда велось много споров. Использовать ноль начали еще в древности, о чем свидетельствуют трактаты вавилонян и надписи майя.

Но повсеместно применять в вычислениях его начали лишь спустя несколько тысячелетий. Это произошло в Индии. Нулю там придавали не только математический, но и философский смысл. Он означает отсутствие всего, а его форма соответствовала кругу жизни.

Ноль значение

Индусы использовали 0 как любое другое число. Его складывали, вычитали, на него умножали. С делением на 0 возникла проблема, но благодаря ей в дальнейшем возникла другая область математики — математический анализ. Идею использования нуля подхватили исламские ученые на Ближнем Востоке и внесли его в арабскую систему счисления.

В Европе до Крестовых походов применялась Римская система счисления. Это непозиционная система, и ноль в ней отсутствует. Делать расчеты в ней очень тяжело. Для вычислений использовали специальные разграфленные таблицы — абаки. Расчеты с их применением производились часами, в то время как сегодня любой школьник сможет легко получить результат, например, перемножая или складывая числа в столбик.

Ноль в древней индии

Во времена первых Крестовых походов арабские цифры вместе с нолем и позиционной системой счисления пришли в Европу. К этим новшествам сначала отнеслись с большим недоверием. Во Флоренции даже был издан закон о запрещении использования арабских цифр вместе с нулем.

Считалось, что они поощряют мошенничество: 0 легко переделать на цифру 9 или приписать в конце счета, чтобы величина долга возросла многократно. Лишь в XV веке, когда началось развитие в сфере математики и механики, люди оценили преимущество нуля и арабских цифр и стали использовать их повсеместно.

Сложение, умножение, степень

В математике используется несколько действий. Они следующие:

  • сложение;
  • вычитание;
  • умножение;
  • деление;
  • возведение в степень.

Умножение на ноль правило математики

Сложение с нулем обычно вопросов не вызывает. Если к любому числу добавить 0, это значит, что к нему не прибавилось ничего. Слагаемое каким было, таким и осталось, сколько раз ноль ни прибавляй. То же самое будет, если отнять ноль.

Операция умножения гораздо менее очевидна. Не все понимают, почему при умножении на ноль получается ноль. Это объясняется особенностями операции умножения. Изначально ее определяли как число, прибавленное к самому себе определенное количество раз, что справедливо для натуральных чисел. Так, 5 х 3 = 15. Этот пример можно заменить следующим выражением: 5 + 5 + 5 = 15. То есть число 5 было взято 3 раза. Согласно этому правилу, умножение на 0 числа 5 дает нулевой результат, и 5 х 0 = 0.

Чтобы было нагляднее, можно привести следующий пример:

  • если мальчик съел 2 раза по 2 яблока, то окажется, что он позавтракал 4 яблоками;
  • если он съел 3 раза по 2 яблока, то в результате получится 6 яблок;
  • если же он съел 0 раз по 2 яблока, то ответ будет 0.

Умножение на 0 правило

Иногда юные скептики выдвигают следующее возражение: допустим, у мальчика в руке 2 яблока. Если он не съел их, то яблоки не пропадут, они так и останутся в него в руке. Почему же тогда результат равен нулю? Действительно, яблоки из руки никуда не денутся. Но в примере учитываются лишь те из них, которые были съедены, проще говоря, оказались в желудке у мальчика. В последнем случае они туда не попали.

Правило умножения на ноль в математике действительно для любых чисел:

  • положительных;
  • отрицательных;
  • целых;
  • дробей;
  • разрядных;
  • рациональных;
  • иррациональных;
  • 0 можно умножать на 0.

Вычитание ноля

В любом случае произведение будет нулевым. С нулем можно производить следующие действия:

  1. Если его разделить на любое ненулевое число, то в результате получится ноль. Правило действительно для положительных и отрицательных чисел.
  2. Любое число, не равное нулю, можно возвести в нулевую степень, в результате получится 1. Ноль в нулевую степень возводить нельзя, это бессмысленно.
  3. Нуль можно возвести в любую ненулевую степень, получится нуль. Пример: 0 2 = 0. Это выражение можно заменить следующим: 0 х 0 =0. Результат будет нулевым согласно правилам умножения.
  4. Корень из нуля равен нулю.

Деление на ноль

Математики говорят, что четыре арифметических действия: сложение, вычитание, умножение и деление неравноправны. Базовыми считаются первое и третье из них (сложение и умножение), а деление и вычитание — производными.

Деление на ноль

Например, разность между 5 и 2 равна 3. Это действие также можно записать в виде следующего выражения: Х + 2 = 5. Решением уравнения будет число 3. Аналогичное правило действует и для умножения. Деление 6 на 3 можно записать так: Х * 2 = 3.

Для действий с нулем можно использовать следующий прием. Выражение записывают так: Х * 0 = 0. Здесь X может быть равен любому числу. Из этого следует, что невозможно найти число, умножение которого на 0 давало бы произведение, отличное от 0.

Если попытаться найти результат от деления ненулевого числа (например, 5) на ноль, то это действие можно записать так: Х * 0 = 5. Так, при умножении любого числа на ноль получается ноль, у этого уравнения в арифметике нет решения.

Раскрытие неопределенностей

Действиями, связанными с делением на 0, занимается один из разделов высшей математики — математический анализ. В нем используется такое понятие, как бесконечность (бесконечно большая величина). Одно из ее определений — это предел, к которому стремится выражение а/Х при Х, стремящемся к нулю. Здесь а — любое ненулевое действительное число. Если в этом выражении уменьшать значение X, то результат будет увеличиваться, пока, в конце концов, не подойдет к бесконечности. С этой величиной можно делать различные математические действия:

  • прибавлять любые числа;
  • вычитать числа, не равные бесконечности;
  • умножать на значения, не равные 0 и бесконечности;
  • возводить в степень, не равную 0.

Умножение на ноль

В результате получится бесконечность. Следующие выражения дают в результате полную неопределенность:

  • бесконечность минус бесконечность;
  • бесконечность умножить на 0;
  • бесконечность разделить на бесконечность;
  • ноль разделить на ноль;
  • ноль умножить на бесконечность;
  • ноль в нулевой степени;
  • бесконечность в степени ноль;
  • единица в степени бесконечность.

Задачи с неопределенностями возникают при вычислении пределов функций, которые заданы формулами, дающими подобные выражения при подстановке предельных значений аргумента. Математики говорят, что результатом таких уравнений будет бесконечное множество чисел. Обычно для их решения используют различные схемы и алгоритмы. Это называется раскрытием неопределенности.

Над нулем можно проделывать все арифметические операции. Единственное ограничение — он не может быть делителем для любого действительного числа. Результатом деления ненулевого числа на ноль в высшей математике считается бесконечность, а деление нуля на ноль дает неопределенность. В арифметике подобные действия считаются невозможными и бессмысленными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *