Как найти наименьшее общее кратное трех чисел
Перейти к содержимому

Как найти наименьшее общее кратное трех чисел

  • автор:

 

Наименьшее общее кратное

Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

Кратное числу « a » — это число, которое само делится на число « a » без остатка.

Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …

Кратные 9: 18, 27, 36, 45 …

Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей — конечное количество.

кратные и делители числа

Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.

Запомните! !

Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

Как найти НОК

НОК можно найти и записать двумя способами.

Первый способ нахождения НОК

Данный способ обычно применяется для небольших чисел.

  1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.
  2. Кратное числа « a » обозначаем большой буквой «К».

Пример. Найти НОК 6 и 8 .

Второй способ нахождения НОК

Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

  1. Разложить данные числа на простые множители. Подробнее правила разложения на простые множители вы можете прочитать в теме как найти наибольший общий делитель (НОД). разложение чисел на простые множители
  2. Выписать в строчку множители, входящие в разложение самого большого из чисел, а под ним — разложение остальных чисел.

Запомните! !

Количество одинаковых множителей в разложениях чисел может быть разное.

Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24) .

пример нахождения наименьшего общего кратного (НОК)24 = 2 · 2 · 2 · 3

Как видим из разложения чисел, все множители 12 вошли в разложение 24 (самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из разложения числа 16 .

НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

Ответ: НОК (12, 16, 24) = 48

Особые случаи нахождения НОК

  1. Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.

Важно! Галка

На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.

Нахождение НОД и НОК чисел

Онлайн-калькулятор «Нахождение НОД и НОК чисел«. Наш калькулятор поможет вам найти наибольший общий делить (НОД) и наименьшее общее кратное (НОК) чисел. Особенностью данного калькулятора является то, что он может находить НОК и НОД не только двух чисел, но и трех или четырех чисел. Введите натуральные числа и нажмите кнопку «Вычислить» и наш калькулятор не просто выдаст ответ, но и представит подробное решение, где последовательно будет изложен порядок нахождения НОД и НОК чисел.

Первое число Второе число Третье число Четвертое число

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое эти числа делятся без остатка. Наибольший общий делитель обозначается следующим образом: НОД (18; 48) = 6

Наименьшее общее кратно нескольких чисел – это самое меньшее число, которое делится на каждое из этих чисел без остатка. Например: НОК (18; 48) = 144

Это следует знать! Как определить, что число делится на 3 без остатка? Очень просто – на 3 делятся только те числа, сумма цифр которых делится на 3. Например: число 795 делится на 3, так как сумма его цифр 7 + 9 + 5 = 21 делится на 3.
21 : 3 = 7

Наименьшее общее кратное

Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.

Числу 3 кратны числа: 6, 9, 12, 15 и т. д.

Числу 4 кратны числа: 8, 12, 16, 20 и т. д.

Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.

Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.

Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.

Пример. Найти общее кратное для чисел 2, 3, 4, 6.

Число 144 — общее кратное чисел 2, 3, 4 и 6.

Для любого количества натуральных чисел существует бесконечно много кратных.

Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.

Наименьшее общее кратное

Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.

Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.

Наименьшее общее кратное записывается так:

НОК (a, b, . ) = x.

Числа в круглых скобках могут быть указаны в любом порядке.

Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:

Как найти НОК

Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.

 

С помощью разложения на простые множители

Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Решение: разложим каждое из этих чисел на простые множители:

Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.

Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:

Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.

Ответ: НОК (99, 54) = 594.

Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.

Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.

Решение: разложим каждое из этих чисел на простые множители:

Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:

2 2 · 3 · 7 2 = 12 · 49 = 588.

Ответ: НОК (12, 49) = 588.

Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.

Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.

Решение: так как данные числа являются простыми, то просто перемножим их:

Ответ: НОК (5, 7, 13) = 455.

Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.

Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.

Решение: разложим каждое из этих чисел на простые множители:

Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:

Ответ: НОК (24, 12, 4) = 24.

Нахождение НОК через НОД

НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.

Правило в общем виде:

НОК (m, n) = m · n : НОД (m, n)

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Теперь мы можем вычислить НОК этих чисел по формуле:

НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.

Ответ: НОК (99, 54) = 594.

Чтобы найти НОК трёх или более чисел используется следующий порядок действий:

  1. Находят НОК любых двух из данных чисел.
  2. Затем находят наименьшее общее кратное найденного НОК и третьего числа и т. д.
  3. Таким образом поиск НОК продолжается до тех пор, пока есть числа.

Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.

Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:

Вычисляем их НОК по формуле:

НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.

Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:

Вычисляем НОК по формуле:

НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.

Ответ: НОК (8, 12, 9) = 72.

Калькулятор НОК

Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК .

Как найти наименьшее общее кратное трех чисел

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо:

1 ) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 2 3 · 3 2 · 7 1 ,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *