Dd1 на схеме что это
Перейти к содержимому

Dd1 на схеме что это

  • автор:

 

Маячок на микросхеме

Маячок на микросхеме

Такой маячок можно собрать как завершённое сигнальное устройство, например, на велосипед или просто ради развлечения.

Маяк на микросхеме устроен проще некуда. В его состав входит одна логическая микросхема, яркий светодиод любого цвета свечения и несколько элементов обвязки.

После сборки маячок начинает работать сразу после подачи на него питания. Настройки практически не требуется, за исключением подстройки длительности вспышек, но это по желанию. Можно оставить всё как есть.

Вот принципиальная схема «маячка».

Схема светодиодного маячка на микросхеме

Итак, поговорим об используемых деталях.

Микросхема К155ЛА3 представляет собой логическую микросхему на базе транзисторно-транзисторной логики – сокращённо называемой ТТЛ. Это означает, что данная микросхема создана из биполярных транзисторов. Микросхема внутри содержит всего лишь 56 деталей – интегральных элемента.

Существуют также КМОП или CMOS микросхемы. Вот они уже собраны на полевых МДП-транзисторах. Стоит отметить тот факт, что у микросхем ТТЛ энергопотребление выше, чем у КМОП-микросхем. Но зато они не боятся статического электричества.

В состав микросхемы К155ЛА3 входит 4 ячейки 2И-НЕ. Цифра 2 означает, что на входе базового логического элемента 2 входа. Если взглянуть на схему, то можно убедиться, что это действительно так. На схемах цифровые микросхемы обозначаются буквами DD1, где цифра 1 указывает на порядковый номер микросхемы. Каждый из базовых элементов микросхемы также имеет своё буквенное обозначение, например, DD1.1 или DD1.2. Здесь цифра после DD1 указывает на порядковый номер базового элемента в микросхеме. Как уже говорилось, у микросхемы К155ЛА3 четыре базовых элемента. На схеме они обозначены как DD1.1; DD1.2; DD1.3; DD1.4.

Конденсатор C1 – электролитический, ёмкостью 470 микрофарад (мкФ). Рабочее напряжение этого конденсатора может быть любым (10V, 16V, 25V. ). Главное, чтобы оно было не меньше 6,3 вольт. Рабочее напряжение электролитического конденсатора указывается на его корпусе. Также напомним, что электролитический конденсатор является полярным элементом, поэтому впаивать его в схему нужно с соблюдением полярности.

Светодиод (обозначен на схеме как HL1) может быть любым на напряжение 3 вольта. Можно установить красный индикаторный светодиод, но лучше применить яркий светодиод красного, синего или зелёного цвета свечения. У ярких светодиодов, как правило, прозрачный корпус и большая светоотдача, чем у обычных индикаторных. В темноте вспышку такого светодиода можно заметить на приличном расстоянии.

Маяк с красным светодиодом

Если в мастерской радиолюбителя имеется беспаечная макетная плата, то на ней можно быстро собрать маячок буквально за пару минут. Так, например, сделал и я. В качестве светодиода был использован яркий светодиод белого и красного свечения.

Менять длительность вспышки светодиода можно и с помощью конденсатора C1. Правда, при этом длительность будет меняться ступенчато, а не плавно, как это можно сделать с помощью переменного резистора, установленного вместо постоянного R1. В схему можно устанавливать конденсатор C1 ёмкостью от 100 мкФ до 2200 мкФ. При этом с увеличением ёмкости С1 светодиод будет светить дольше. Чем больше ёмкость, тем дольше длительность вспышки.

Схема маячка, собранная на макетной плате

В качестве источника питания можно использовать регулируемый блок питания, собранный своими руками или промышленный. На его выходе необходимо выставить напряжение 4,5 – 5 вольт. Подавать более 5 вольт на схему не рекомендуется, так как микросхема может сгореть. Максимальное напряжения питания, которое выдерживает микросхема К155ЛА3, составляет 6 вольт, но при этом эксплуатационные параметры не гарантируются. Поэтому подавать на микросхему больше 5,5 вольт просто опасно.

Также можно запитать схему от трёх последовательно включенных батареек по 1,5 вольт каждая. Подойдут, например, "пальчиковые" батарейки типоразмера АА (LR6). На схеме, как раз, и изображена составная батарея питания GB1 напряжением 4,5 вольта. Перед тем, как собрать составную батарею питания, прочтите статью о том, как правильно соединять батарейки. Пригодится не раз.

Выключатель S1 может быть любым. Можно заменить его кнопкой с фиксацией. Так как схема потребляет незначительный ток, то выключатель может быть любым, по возможности миниатюрным.

Постоянный резистор R1 можно заменить подстроечным или переменным на 1,5 килоома. Это позволит менять длительность вспышки яркого светодиода. О том, как определить основные параметры постоянного резистора, читайте в статье о параметрах резистора.

Если взглянуть на принципиальную схему более внимательно, то можно заметить, что буквенное обозначение резистора R1* имеет звёздочку «*». И это неспроста.

Так на схемах обозначаются элементы, номинал которых необходимо подстраивать (подбирать) во время налаживания схемы для того, чтобы добиться нужного режима работы схемы. В данном случае с помощью этого резистора можно настроить длительность вспышки светодиода.

В других схемах, которые вы можете встретить, подбором сопротивления резистора, обозначенного звёздочкой, нужно добиться определённого режима работы, например, транзистора в усилителе. Как правило, в описании схемы приводится методика настройки. В ней описывается, как можно определить, что работа схемы настроена верно. Обычно это делается замером тока или напряжения на определённом участке схемы. Для схемы маяка всё гораздо проще. Настройка производится чисто визуально и не требует замера напряжений и токов.

На принципиальных схемах, где устройство собрано на микросхемах, как правило, редко можно обнаружить элемент, номинал которого нужно подбирать. Да это и не удивительно, так как микросхемы это по сути уже настроенные элементарные устройства. А, например, на старых принципиальных схемах, которые содержат десятки отдельных транзисторов, резисторов и конденсаторов звёздочку «*» рядом с буквенным обозначением радиодетали можно встретить куда чаще.

Теперь поговорим о цоколёвке микросхемы К155ЛА3. Если не знать некоторых правил, то можно столкнуться с неожиданным вопросом: "А как определить номер вывода микросхемы?" Тут нам на помощь придёт так называемый «ключ». Ключ – это специальная метка на корпусе микросхемы, указывающая точку отсчёта нумерации выводов. Отсчёт номера вывода микросхемы, как правило, ведётся против часовой стрелки. Взгляните на рисунок, и вам всё станет ясно.

Внешний вид и нумерация выводов микросхемы К155ЛА3

К выводу микросхемы К155ЛА3 под номером 14 подключается плюс «+» питания, а к выводу 7 – минус «-». Минус считается общим проводом, по зарубежной терминологии обозначается как «GND».

Обозначение радиоэлементов на схемах

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Обозначение радиоэлементов на схемах

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.

Обозначение радиоэлементов на схемах

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Обозначение радиоэлементов на схемах

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Обозначение радиоэлементов на схемах

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Обозначение радиоэлементов на схемах

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Обозначение радиоэлементов на схемах

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Обозначение радиоэлементов на схемах

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Обозначение радиоэлементов на схемах

Итак, давайте первым делом разберемся с надписями. R — это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А — это различные устройства (например, усилители)

В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D — схемы интегральные и различные модули

E — разные элементы, которые не попадают ни в одну группу

F — разрядники, предохранители, защитные устройства

G — генераторы, источники питания, кварцевые генераторы

H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K — реле и пускатели

M — двигатели

Р — приборы и измерительное оборудование

Q — выключатели и разъединители в силовых цепях. То есть в цепях, где «гуляет» большое напряжение и большая сила тока

R — резисторы

S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T — трансформаторы и автотрансформаторы

U — преобразователи электрических величин в электрические, устройства связи

V — полупроводниковые приборы

W — линии и элементы сверхвысокой частоты, антенны

X — контактные соединения

Y — механические устройства с электромагнитным приводом

Z — оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD — детектор ионизирующих излучений

BE — сельсин-приемник

BL — фотоэлемент

BQ — пьезоэлемент

BR — датчик частоты вращения

BS — звукосниматель

BV — датчик скорости

BA — громкоговоритель

BB — магнитострикционный элемент

BK — тепловой датчик

BM — микрофон

BP — датчик давления

BC — сельсин датчик

DA — схема интегральная аналоговая

DD — схема интегральная цифровая, логический элемент

DS — устройство хранения информации

DT — устройство задержки

EL — лампа осветительная

EK — нагревательный элемент

FA — элемент защиты по току мгновенного действия

FP — элемент защиты по току инерционнго действия

FU — плавкий предохранитель

FV — элемент защиты по напряжению

GB — батарея

HG — символьный индикатор

HL — прибор световой сигнализации

HA — прибор звуковой сигнализации

KV — реле напряжения

KA — реле токовое

KK — реле электротепловое

KM — магнитный пускатель

KT — реле времени

PC — счетчик импульсов

PF — частотомер

PI — счетчик активной энергии

PR — омметр

PS — регистрирующий прибор

PV — вольтметр

PA — амперметр

PK — счетчик реактивной энергии

PT — часы

QF — выключатель автоматический

QS — разъединитель

RK — терморезистор

RP — потенциометр

RS — шунт измерительный

SA — выключатель или переключатель

SB — выключатель кнопочный

SF — выключатель автоматический

SK — выключатели, срабатывающие от температуры

SL — выключатели, срабатывающие от уровня

SP — выключатели, срабатывающие от давления

SQ — выключатели, срабатывающие от положения

SR — выключатели, срабатывающие от частоты вращения

TV — трансформатор напряжения

UB — модулятор

UI — дискриминатор

UR — демодулятор

UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL — прибор электровакуумный

WA — антенна

WT — фазовращатель

WU — аттенюатор

XA — токосъемник, скользящий контакт

XP — штырь

XS — гнездо

XT — разборное соединение

XW — высокочастотный соединитель

 

YA — электромагнит

YB — тормоз с электромагнитным приводом

YC — муфта с электромагнитным приводом

YH — электромагнитная плита

ZQ — кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

Обозначение радиоэлементов на схемах

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Конденсаторы

Обозначение радиоэлементов на схемах

a) общее обозначение конденсатора

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Акустика

Обозначение радиоэлементов на схемах

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

Обозначение радиоэлементов на схемах

б) общее обозначение диода

г) двусторонний стабилитрон

д) двунаправленный диод

ж) туннельный диод

з) обращенный диод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

Измерители электрических величин

Обозначение радиоэлементов на схемах

Катушки индуктивности

Обозначение радиоэлементов на схемах

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

Обозначение радиоэлементов на схемах

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

Обозначение радиоэлементов на схемах

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

Электромагнитное реле с разными группами контактов

Обозначение радиоэлементов на схемах

Предохранители

Обозначение радиоэлементов на схемах

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Обозначение радиоэлементов на схемах

Однопереходный транзистор

Обозначение радиоэлементов на схемах

Полевой транзистор с управляющим PN-переходом

Обозначение радиоэлементов на схемах

Моп-транзисторы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

IGBT-транзисторы

Обозначение радиоэлементов на схемах

Фото-радиоэлементы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Оптоэлектронные приборы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Симисторная оптопара (статья про симистор)

Кварцевый резонатор

Обозначение радиоэлементов на схемах

Датчик Холла

Обозначение радиоэлементов на схемах

Микросхема

Обозначение радиоэлементов на схемах

Операционный усилитель (ОУ)

Обозначение радиоэлементов на схемах

Семисегментый индикатор

Обозначение радиоэлементов на схемах

Различные лампы

Обозначение радиоэлементов на схемах

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Соединение с корпусом (массой)

Обозначение радиоэлементов на схемах

Земля

Обозначение радиоэлементов на схемах

Рекомендуем стартовый набор радиолюбителя — по ссылке.

Применяем D-триггер в электронных приборах

Триггеры различных видов зачастую входят в состав различной простой схемотехники, где не требуется применение микроконтроллеров. Они могут сохранять ранее установленные значения, изменять их, производить запись логического нуля или единицы. D-триггер является одним из наиболее распространённых видов таких устройств. Он позволяет осуществлять задержку сигналов, а также хранить информацию на протяжении нужного времени.

Триггеры используются в схемах самых разных устройств

Какие бывают триггеры

Действие триггеров основывается на определенных принципах, зависящих от их типа. Эти логические устройства принимают входные сигналы, которые ими и управляют. Выходная информация зависит от сигнала, поступившего на вход и от полученного на предыдущем этапе. Следовательно, D-триггер реагирует и на существующие в данный момент значения, и на поступившие ранее.

Условное обозначение D-триггера

Условно-графическое обозначение (УГО) Д-триггера демонстрирует, что у него вход D является информационным, а второй, обозначенный буквой С, используется для синхронизации записи и позволяет сохранить на выходе состояние, которое было на входе в момент его изменения в 1 (что называется режим «прозрачности»).

Триггер может быть синхронный (тактируемый) и асинхронный (нетактируемый). В первом случае устройство учитывает тактовые сигналы. В любой вычислительной системе все действия выполняются с привязкой к сигналам такого типа с целью обеспечения согласованной работы.

Использование тактовых сигналов в синхронных триггерах означает, что срабатывание по заложенному принципу происходит не в любой момент времени, а лишь тогда, когда на управляющем входе наблюдается определенное событие. Например, если осуществляется переход тактового импульса от максимального значения до нулевого или наоборот. У асинхронных устройств такой привязки нет. В них переход из одного режима в другой выполняется перепадом напряжения.

Триггеры представляют собой достаточно сложные электронные схемы, но они обеспечивают выполнение простого и понятного принципа преобразования входных сигналов в выходные. D-триггеры называют еще «защелками», что наглядно поясняет их принцип работы.

Схема классического D-триггера

Как работает D-триггер

Входы D-триггера разделяются на информационные (управляющие) и вспомогательные. Последние предназначены синхронизировать работу устройства. Первые устанавливают на входе определённую комбинацию двоичных чисел, которая будет учитываться при формировании выходного сигнала. Управляет логикой работы тактовый сигнал. Именно он определяет момент срабатывания триггера, а от его характеристик зависит состояние выходного сигнала.

D-триггер называют еще триггером задержки, поскольку он способен задерживать входной информационный сигнал на один такт. Время задержки определяется частотой импульсов синхронизации. Если информационный сигнал изменится, то выходной повторит его изменение, но лишь после того как тактовый сигнал примет значение, равное единице. Пока его значение будет оставаться нулевым, сигнал на выходе меняться не будет.

Работа любого D-триггера отражается в таблице истинности. Как видим, таблица истинности статического D-триггера достаточно простая. Она показывает, что нулевое значение управляющего сигнала обеспечивает хранение предыдущего значения сигнала на выходе на протяжении любого нужного периода времени. На практике речь идёт о том времени, когда к устройству подключено электропитание.

Таблица истинности

В представленной таблице истинности приведена информация о срабатывании D-триггера при значении C = 1. На практике применяется ещё один вариант, когда срабатывание происходит по переднему фронту импульса. То есть, выходное значение становится равным входному в тот момент, когда значение управляющего импульса меняется с нуля на 1. Логический элемент, в котором используется управление по уровню напряжения, называется статический D-триггер, а по фронту — динамический.

Когда применяется управление по фронту, срабатывание происходит при изменении управляющего значения. Может применяться два варианта — по переднему фронту или по заднему. При использовании первого варианта значение меняется с 0 на 1, второго — с 1 на 0.

Помимо таблицы, для описания работы логических элементов используются еще временные диаграммы.

Временная диаграмма при управлении по переднему фронту

Усложнённый вариант триггера

Иногда используется усложнённый вариант, когда добавляется ещё один вход. Обычно его обозначают буквой R. Если на него подается сигнал с нулевым значением, он не оказывает никакого влияния на работу элемента. В том случае, когда на вход R поступает сигнал с единичным значением, происходит сброс Q в 0. Этого же можно добиться на классическом D-триггере, если использовать C = 0 и D = 0.

Триггер с использованием входа R

Схемы реализации D-триггера

Существуют разные варианты построения данного логического элемента. Ниже представлена схема одноступенчатого D-триггера с применением элементов И-НЕ. Входы у него прямые статические. Элементы, обозначенные DD1.1 и DD1.2, задействованы в схеме управления, а на остальных построен асинхронный RS-триггер.

Структурная схема

Роль каждого элемента будет проще понять, изучив принцип работы Д-триггера. Из схемы видно, если C = 0, то логическая операция И создаст нулевое значение независимо от вторых входных значений на DD1.1 и DD1.2. Операция отрицания сформирует единицу на выходе обоих этих элементов.

На входе третьего элемента будет два значения: единица и отрицание Q. Операция И на выходе сформирует отрицание Q. Отрицание приведёт к тому, что на выходе будет значение Q, совпадающее с тем, которое здесь было раньше.

На четвертый элемент поступят единица и Q. Результатом применения И будет Q. После применения отрицания на выходе этого элемента будет отрицание Q. Следовательно, и в этом случае значение не изменится.

Теперь нужно рассмотреть ситуацию, когда на управляющем входе единичное значение. Если D = 0, то после применения И будет получен ноль, а в результате отрицания выходным значением DD.1 станет единица, которая будет передана на вход DD1.2.

В DD1.2 на входе имеется две единицы, значит операция И сформирует 1, а отрицание даст 0. Следовательно, на DD1.4 на выходе будет единица, что соответствует нулевому значению Q. По такому же принципу рассчитываются остальные варианты.

Схему D-триггера можно получить из синхронного RS-триггера за счет введения дополнительного элемента И-НЕ1, соединяющего оба инверсных входа в один информационный. Это позволяет исключить состояние неопределенности для S и R.

D-триггер, построенный на базе RS-триггера

Существуют еще комбинированные D-триггеры. Они имеют входы S и R, предназначенные для асинхронной установки логического 0 и 1. С помощью этих входов устройству можно придать первоначальное определенное состояние.

Комбинированный D-триггер

На схеме видно, что из 6 элементов И-НЕ построен D-триггер, его принцип работы следующий: при наличии 1 на входе R и нуля на C, D, S будут оставаться закрытыми элементы с первого по пятый. Шестой элемент при этом будет открытым, то есть, Q = 1, а /Q = 0. Первый элемент откроется, если с входа S будет снят нулевой сигнал. Состояние остальных элементов не изменится.

Когда на вход С поступит единичный сигнал, на всех входах третьего элемента появится такой же сигнал, в результате чего он откроется. Шестой элемент при этом закроется и /Q = 1. Затем на входы пятого элемента также поступят единичные сигналы, и он примет открытое состояние, а Q = 0. В результате после переключения триггера на выходе Q появится сигнал идентичный тому сигналу, который был на входе D до переключения, то есть, Qn+1 = Dn = 0. Если же с входа С снимается единичный сигнал, состояние триггера не меняется.

Достаточно просто схема D-триггера реализовывается на КМОП микросхемах. В подобных устройствах функции логических элементов И выполняют обычные транзисторные ключи.

Схема D-триггера на транзисторах

После поступления синхросигнала высокого уровня на вход С транзистор №1 открывается, обеспечивая поступление сигнала с D на Q. При этом задействуется первый инвертор. В данной ситуации второй транзистор остается закрытым. Он отключает инвертор, построенный на транзисторах VT1 и VT3. Включается этот инвертор после поступления низкого потенциала на вход С.

D-триггеры входят в состав многих микросхем. Например, в микросхеме ТМ2 содержится два таких элемента, ТМ5, ТМ7, ТМ8 — четыре, ТМ9 — шесть.

Функциональные схемы микросхем с D-триггером

Применение D-триггеров

Способность сохранять информацию позволяет применять D-триггеры для реализации устройств памяти. Эти работающие элементы способны сохранять нужный режим на выходе до тех пор, пока не будет подан управляющий сигнал для изменения. Триггер даёт возможность, как вносить двоичную информацию, так и хранить и считывать её.

Понимая, что такое Д-триггер, его можно применить для создания регистра-защёлки. Эти устройства важны в определённых ситуациях. Иногда сигнал длится на протяжении очень небольшого промежутка времени и микросхема может не успеть среагировать на него. В подобных случаях выгодно использовать ещё одну микросхему, на которой сохранятся необходимые значения на протяжении времени, достаточного для выполнения нужных действий.

Схема регистра

Одно из основных назначений D-триггера — использование в счетном режиме. Чтобы заставить его работать в качестве счетчика импульсов, достаточно на вход D подать сигнал с его собственного инверторного выхода. В таком режиме по приходу каждого импульса на вход С триггер будет менять свое состояние на противоположное, как показано на временной диаграмме.

Делитель частоты — устройство, способное изменять частоту выходного сигнала относительно входного значения. Используя каскадное соединение нескольких элементов, можно построить делители частоты, обладающие различными коэффициентами деления. Два D-триггера, соединенных последовательно, обеспечивают получение выходного сигнала, частота которого в четыре раза меньше по сравнению с той, что была на входе. Три последовательно соединенных элемента будут делить ее на восемь, а четыре — на шестнадцать.

Схема делителя

При создании цифровых схем, действие которых синхронизируется единым тактовым генератором, очень часть бывает необходимо добиться синхронизации действующей схемы и внешнего входного сигнала. То есть, асинхронный сигнал должен преобразоваться в синхронный для всей системы, в которую он поступает. Эту задачу можно решить путем установки D-триггера.

Триггер способен выполнять логическую функцию и при этом поддерживать обратную связь. Именно поэтому его используют при создании многих устройств, предназначенных для запоминания, хранения, передачи и преобразования информации. Найти эти элементы можно в самых разных приборах, включая и устройства цифровой микроэлектроники.

Генераторы и формирователи импульсов

На базе логических элементов цифровых устройств могут быть сконструированы разнообразные генераторы импульсов. Вот несколько конкретных примеров.

Генератор по схеме на рисунке 1 (используются элементы 2И-НЕ с открытым коллектором) вырабатывает импульсы в широком диапазоне частот — от единиц герц до нескольких килогерц. Зависимость частоты f (кГц) от емкости конденсатора С1 (пФ) выражается приближенной формулой f»3*105/C1. Скважность импульсного напряжения практически равна 2. При снижении напряжения источника питания на 0,5 В частота генерируемых импульсов уменьшается на 20%.

В генераторе по схеме на рисунке 2 длительность импульсов можно регулировать переменным резистором R2 (скважность изменяется от 1,5 до 3), а частоту — резистором R1. Например, в генераторе с С1==0,1 мкф при исключении резистора R2 только резистором R1 частоту генерируемых импульсов можно изменять от 8 до 125 кГц. Для получения другого диапазона частот необходимо изменить емкость конденсатора С1.

Широкое изменение частоты генерируемых импульсов (около 50 тысяч раз) обеспечивает устройство, собранное по схеме на рисунке 3. Минимальная частота импульсов здесь около 25 Гц. Длительность импульсов регулируют резистором R1. Частоту следования можно определить по формуле:
f=1/(2R1C1)
f — частота Гц, R1 — сопротивление Ом, С1 — ёмкость фарад.

При реализации цифровых устройств различного назначения часто необходимо сформировать короткие импульсы по фронтам входного сигнала. В частности, такие импульсы используют для сброса счетчиков в качестве импульсов синхронизации при записи информации в регистры и т. д. На рисунке 4 изображены схема и временные диаграммы формирователя коротких отрицательных импульсов по положительному перепаду напряжения на его входе. При изменении напряжения Uвх от низкого уровня до высокого этот перепад без задержки поступает на вход 13 элемента DD1.4. В то же время на входе 12 элемента DD1.4 напряжение высокого уровня сохраняется, в течение времени распространения сигнала через элементы DD1.1-DD1.3 (около 75 нc). В результате в течение этого времени на выходе устройства сохраняется напряжение низкого уровня. Затем на входе 12 устанавливается напряжение низкого уровня, а на выходе устройства — высокого. Таким образом, формируется короткий отрицательный импульс, фронт которого совпадает с фронтом входного напряжения. Чтобы такое устройство использовать для формирования отрицательного импульса по срезу входного сигнала, его надо дополнить еще одним инвертором рисунок 4.

На рисунке 5 изображены схема и временная диаграмма работы формирователя импульсов по фронту и срезу входного сигнала. Длительность каждого сформированного импульса равна
tи1=tи2=nt1,0зд.р.+(n+1)t0,1зд.р.
Здесь n — четное число элементов, участвующих в задержке сигналов. Принцип работы этого формирователя аналогичен принципу работы описанных ранее формирователей коротких импульсов.

Широкое распространение получил формирователь коротких импульсов, схема и временная диаграмма работы которого изображены на рисунке 6. При напряжении низкого уровня на входе устройства конденсатор С1 заряжается через резисторы R1 и R2. При этом напряжение на выходе устройства имеет низкий уровень. При появлении на входе формирователя напряжения высокого уровня конденсатор С1 начинает разряжаться через резистор R2. До тех пор, пока напряжение на конденсаторе не уменьшится до низкого уровня, на обоих входах элемента DD1.2, а следовательно, и на выходе формирователя присутствуют напряжения высоких уровней. Как только напряжение на конденсоре станет меньше 0,4 В, уровень на выходе формирователя изменяется рисунок 6,б. Длительность импульса пропорциональна постоянной времени разрядки конденсатора и равна tи=3R2*С1.

Формирователи импульсов имеются и в составе микросхем серии К155. Так, микросхема К155АГ1 представляет собой одновибратор с тремя входами, прямым и инверсным, выходами и выводами для подключения внешних времязадающих цепей рисунок 7. Одновибратор может запускаться как положительным, так и отрицательным перепадами входных сигналов при определенном напряжении, не зависящем от длительности входных импульсов. Переключается одновибратор отрицательным перепадом входного сигнала, поданного на один из входов А, в то время как на вход В подано напряжение высокого уровня, или положительным перепадом, поданным, на вход В, если на одном из входов А или А1 присутствует напряжение низкого уровня.

При максимальном сопротивлении резистора Rвн=40 кОм длительность выходного импульса не должна превышать 0,9Т, где Т — период следования входных импульсов. Длительность выходного импульса зависит от сопротивления Rвн=(0-40) кОм и С=(0-1000) мкф и определяется формулой:
tи=RС1n2. Здесь R=2к+Rвн, 2к — сопротивление внутреннего резистора.

В состав серии К155 входит также микросхема К155АГЗ. В одном корпусе в ней содержатся два одновибратора. Варианты подключения внешних времязадающих элементов и временная диаграмма работы одновибратора изображены на рисунке 8. Одновибратор также запускается либо отрицательным (перепадом входного сигнала на входе А при высоком уровне на входах B и R, либо положительны перепадом положительным перепадом напряжения на входе В при низком уровне на входе А и высоком уровне на входе R. Длительность импульса tи1 определяется постоянной времени времязадающей цепи, но может быть уменьшена за счёт подачи на вход R напряжения низкого уровня при tи2

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *